Cargando…
Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables
BACKGROUND: This study aimed to develop a deep-learning model and a risk-score system using clinical variables to predict intensive care unit (ICU) admission and in-hospital mortality in COVID-19 patients. METHODS: This retrospective study consisted of 5,766 persons-under-investigation for COVID-19...
Autores principales: | Li, Xiaoran, Ge, Peilin, Zhu, Jocelyn, Li, Haifang, Graham, James, Singer, Adam, Richman, Paul S., Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651477/ https://www.ncbi.nlm.nih.gov/pubmed/33194455 http://dx.doi.org/10.7717/peerj.10337 |
Ejemplares similares
-
Interpretable deep learning for the prediction of ICU admission likelihood and mortality of COVID-19 patients
por: Nazir, Amril, et al.
Publicado: (2022) -
Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs
por: Kikkisetti, Shreeja, et al.
Publicado: (2020) -
Prediction model and risk scores of ICU admission and mortality in COVID-19
por: Zhao, Zirun, et al.
Publicado: (2020) -
Deep‐learning artificial intelligence analysis of clinical variables predicts mortality in COVID‐19 patients
por: Zhu, Jocelyn S, et al.
Publicado: (2020) -
A variable-rate quantitative trait evolution model using penalized-likelihood
por: Revell, Liam J.
Publicado: (2021)