Cargando…
Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network
OBJECTIVES: To reveal the utility of motion artifact reduction with convolutional neural network (MARC) in gadoxetate disodium–enhanced multi-arterial phase MRI of the liver. METHODS: This retrospective study included 192 patients (131 men, 68.7 ± 10.3 years) receiving gadoxetate disodium–enhanced l...
Autores principales: | Kromrey, M.-L., Tamada, D., Johno, H., Funayama, S., Nagata, N., Ichikawa, S., Kühn, J.-P., Onishi, H., Motosugi, U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651696/ https://www.ncbi.nlm.nih.gov/pubmed/32556463 http://dx.doi.org/10.1007/s00330-020-07006-1 |
Ejemplares similares
-
Motion Artifact Reduction Using a Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver
por: Tamada, Daiki, et al.
Publicado: (2019) -
Safety profile of gadoxetate disodium in elderly patients (≥65 years)
por: Endrikat, Jan, et al.
Publicado: (2017) -
Safety of gadoxetate disodium: results from six clinical phase IV studies in 8194 patients
por: Endrikat, Jan, et al.
Publicado: (2015) -
Respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine: compressed sensing MRI revealing physiologic phenomena during the entire injection cycle
por: Glessgen, Carl Guillaume, et al.
Publicado: (2021) -
ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents
por: Neri, E., et al.
Publicado: (2015)