Cargando…

Transcription Factor E2F1 Aggravates Neurological Injury in Ischemic Stroke via microRNA-122-Targeted Sprouty2

BACKGROUND: It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS. PATIENTS AND...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yunxia, Gao, Zhiqiang, Zhang, Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651997/
https://www.ncbi.nlm.nih.gov/pubmed/33177827
http://dx.doi.org/10.2147/NDT.S271320
Descripción
Sumario:BACKGROUND: It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS. PATIENTS AND METHODS: E2F1, miR-122, and SPRY2 expression in serum from patients with IS and oxygen-glucose deprivation (OGD)-treated N2a cells was detected by RT-qPCR. After gain- and loss-of-function approaches in OGD-induced N2a cells, GAFP staining, flow cytometry, and Western blot analysis were adopted to assess neuronal viability, cell cycle and apoptosis, and expression of apoptosis- and autophagy-related proteins, respectively. Meanwhile, mice with IS were induced, in which E2F1, miR-122, and SPRY2 were overexpressed, followed by evaluation of neurological deficit and cerebral infarction area. The MAPK pathway activity in tissues of mice and cells was determined. RESULTS: miR-122 was down-regulated, and E2F1 and SPRY2 were up-regulated in IS patients and OGD-induced N2a cells. E2F1 inhibited miR-122 transcription, while miR-122 targeted SPRY2. Overexpression (OE) of miR-122 or down-regulation of E2F1 or SPRY2 increased viability, but decreased apoptosis, cell cycle arrest, and autophagy in OGD-induced N2a cells. In IS mice, the neurological deficit score and cerebral infarction area were elevated, which was aggravated by up-regulating E2F1 or SPRY2 but attenuated by overexpressing miR-122. E2F1/miR-122/SPRY2 axis mediated the MAPK pathway in vivo and in vitro. CONCLUSION: Collectively, E2F1 reduced miR-122 transcription to up-regulate SPRY2, which inactivated MAPK pathway and promoted neurological deficit in IS.