Cargando…
Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
MOTIVATION: The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or...
Autores principales: | Zhang, Xinyan, Guo, Boyi, Yi, Nengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652264/ https://www.ncbi.nlm.nih.gov/pubmed/33166356 http://dx.doi.org/10.1371/journal.pone.0242073 |
Ejemplares similares
-
NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis
por: Zhang, Xinyan, et al.
Publicado: (2020) -
Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
por: Zhang, Xinyan, et al.
Publicado: (2018) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data
por: Xu, Lizhen, et al.
Publicado: (2015) -
Compositional zero-inflated network estimation for microbiome data
por: Ha, Min Jin, et al.
Publicado: (2020)