Cargando…

Myeloid transformation by MLL-ENL depends strictly on C/EBP

Chromosomal rearrangements of the mixed-lineage leukemia gene MLL1 are the hallmark of infant acute leukemia. The granulocyte-macrophage progenitor state forms the epigenetic basis for myelomonocytic leukemia stemness and transformation by MLL-type oncoproteins. Previously, it was shown that the est...

Descripción completa

Detalles Bibliográficos
Autores principales: Wesolowski, Radoslaw, Kowenz-Leutz, Elisabeth, Zimmermann, Karin, Dörr, Dorothea, Hofstätter, Maria, Slany, Robert K, Mildner, Alexander, Leutz, Achim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652399/
https://www.ncbi.nlm.nih.gov/pubmed/33144337
http://dx.doi.org/10.26508/lsa.202000709
Descripción
Sumario:Chromosomal rearrangements of the mixed-lineage leukemia gene MLL1 are the hallmark of infant acute leukemia. The granulocyte-macrophage progenitor state forms the epigenetic basis for myelomonocytic leukemia stemness and transformation by MLL-type oncoproteins. Previously, it was shown that the establishment of murine myelomonocytic MLL-ENL transformation, but not its maintenance, depends on the transcription factor C/EBPα, suggesting an epigenetic hit-and-run mechanism of MLL-driven oncogenesis. Here, we demonstrate that compound deletion of Cebpa/Cebpb almost entirely abrogated the growth and survival of MLL-ENL–transformed cells. Rare, slow-growing, and apoptosis-prone MLL-ENL–transformed escapees were recovered from compound Cebpa/Cebpb deletions. The escapees were uniformly characterized by high expression of the resident Cebpe gene, suggesting inferior functional compensation of C/EBPα/C/EBPβ deficiency by C/EBPε. Complementation was augmented by ectopic C/EBPβ expression and downstream activation of IGF1 that enhanced growth. Cebpe gene inactivation was accomplished only in the presence of complementing C/EBPβ, but not in its absence, confirming the Cebpe dependency of the Cebpa/Cebpb double knockouts. Our data show that MLL-transformed myeloid cells are dependent on C/EBPs during the initiation and maintenance of transformation.