Cargando…

Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking....

Descripción completa

Detalles Bibliográficos
Autores principales: Vaid, Akhil, Somani, Sulaiman, Russak, Adam J, De Freitas, Jessica K, Chaudhry, Fayzan F, Paranjpe, Ishan, Johnson, Kipp W, Lee, Samuel J, Miotto, Riccardo, Richter, Felix, Zhao, Shan, Beckmann, Noam D, Naik, Nidhi, Kia, Arash, Timsina, Prem, Lala, Anuradha, Paranjpe, Manish, Golden, Eddye, Danieletto, Matteo, Singh, Manbir, Meyer, Dara, O'Reilly, Paul F, Huckins, Laura, Kovatch, Patricia, Finkelstein, Joseph, Freeman, Robert M., Argulian, Edgar, Kasarskis, Andrew, Percha, Bethany, Aberg, Judith A, Bagiella, Emilia, Horowitz, Carol R, Murphy, Barbara, Nestler, Eric J, Schadt, Eric E, Cho, Judy H, Cordon-Cardo, Carlos, Fuster, Valentin, Charney, Dennis S, Reich, David L, Bottinger, Erwin P, Levin, Matthew A, Narula, Jagat, Fayad, Zahi A, Just, Allan C, Charney, Alexander W, Nadkarni, Girish N, Glicksberg, Benjamin S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652593/
https://www.ncbi.nlm.nih.gov/pubmed/33027032
http://dx.doi.org/10.2196/24018
_version_ 1783607721658941440
author Vaid, Akhil
Somani, Sulaiman
Russak, Adam J
De Freitas, Jessica K
Chaudhry, Fayzan F
Paranjpe, Ishan
Johnson, Kipp W
Lee, Samuel J
Miotto, Riccardo
Richter, Felix
Zhao, Shan
Beckmann, Noam D
Naik, Nidhi
Kia, Arash
Timsina, Prem
Lala, Anuradha
Paranjpe, Manish
Golden, Eddye
Danieletto, Matteo
Singh, Manbir
Meyer, Dara
O'Reilly, Paul F
Huckins, Laura
Kovatch, Patricia
Finkelstein, Joseph
Freeman, Robert M.
Argulian, Edgar
Kasarskis, Andrew
Percha, Bethany
Aberg, Judith A
Bagiella, Emilia
Horowitz, Carol R
Murphy, Barbara
Nestler, Eric J
Schadt, Eric E
Cho, Judy H
Cordon-Cardo, Carlos
Fuster, Valentin
Charney, Dennis S
Reich, David L
Bottinger, Erwin P
Levin, Matthew A
Narula, Jagat
Fayad, Zahi A
Just, Allan C
Charney, Alexander W
Nadkarni, Girish N
Glicksberg, Benjamin S
author_facet Vaid, Akhil
Somani, Sulaiman
Russak, Adam J
De Freitas, Jessica K
Chaudhry, Fayzan F
Paranjpe, Ishan
Johnson, Kipp W
Lee, Samuel J
Miotto, Riccardo
Richter, Felix
Zhao, Shan
Beckmann, Noam D
Naik, Nidhi
Kia, Arash
Timsina, Prem
Lala, Anuradha
Paranjpe, Manish
Golden, Eddye
Danieletto, Matteo
Singh, Manbir
Meyer, Dara
O'Reilly, Paul F
Huckins, Laura
Kovatch, Patricia
Finkelstein, Joseph
Freeman, Robert M.
Argulian, Edgar
Kasarskis, Andrew
Percha, Bethany
Aberg, Judith A
Bagiella, Emilia
Horowitz, Carol R
Murphy, Barbara
Nestler, Eric J
Schadt, Eric E
Cho, Judy H
Cordon-Cardo, Carlos
Fuster, Valentin
Charney, Dennis S
Reich, David L
Bottinger, Erwin P
Levin, Matthew A
Narula, Jagat
Fayad, Zahi A
Just, Allan C
Charney, Alexander W
Nadkarni, Girish N
Glicksberg, Benjamin S
author_sort Vaid, Akhil
collection PubMed
description BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19–positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.
format Online
Article
Text
id pubmed-7652593
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-76525932020-11-13 Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation Vaid, Akhil Somani, Sulaiman Russak, Adam J De Freitas, Jessica K Chaudhry, Fayzan F Paranjpe, Ishan Johnson, Kipp W Lee, Samuel J Miotto, Riccardo Richter, Felix Zhao, Shan Beckmann, Noam D Naik, Nidhi Kia, Arash Timsina, Prem Lala, Anuradha Paranjpe, Manish Golden, Eddye Danieletto, Matteo Singh, Manbir Meyer, Dara O'Reilly, Paul F Huckins, Laura Kovatch, Patricia Finkelstein, Joseph Freeman, Robert M. Argulian, Edgar Kasarskis, Andrew Percha, Bethany Aberg, Judith A Bagiella, Emilia Horowitz, Carol R Murphy, Barbara Nestler, Eric J Schadt, Eric E Cho, Judy H Cordon-Cardo, Carlos Fuster, Valentin Charney, Dennis S Reich, David L Bottinger, Erwin P Levin, Matthew A Narula, Jagat Fayad, Zahi A Just, Allan C Charney, Alexander W Nadkarni, Girish N Glicksberg, Benjamin S J Med Internet Res Original Paper BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19–positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes. JMIR Publications 2020-11-06 /pmc/articles/PMC7652593/ /pubmed/33027032 http://dx.doi.org/10.2196/24018 Text en ©Akhil Vaid, Sulaiman Somani, Adam J Russak, Jessica K De Freitas, Fayzan F Chaudhry, Ishan Paranjpe, Kipp W Johnson, Samuel J Lee, Riccardo Miotto, Felix Richter, Shan Zhao, Noam D Beckmann, Nidhi Naik, Arash Kia, Prem Timsina, Anuradha Lala, Manish Paranjpe, Eddye Golden, Matteo Danieletto, Manbir Singh, Dara Meyer, Paul F O'Reilly, Laura Huckins, Patricia Kovatch, Joseph Finkelstein, Robert M. Freeman, Edgar Argulian, Andrew Kasarskis, Bethany Percha, Judith A Aberg, Emilia Bagiella, Carol R Horowitz, Barbara Murphy, Eric J Nestler, Eric E Schadt, Judy H Cho, Carlos Cordon-Cardo, Valentin Fuster, Dennis S Charney, David L Reich, Erwin P Bottinger, Matthew A Levin, Jagat Narula, Zahi A Fayad, Allan C Just, Alexander W Charney, Girish N Nadkarni, Benjamin S Glicksberg. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.11.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Vaid, Akhil
Somani, Sulaiman
Russak, Adam J
De Freitas, Jessica K
Chaudhry, Fayzan F
Paranjpe, Ishan
Johnson, Kipp W
Lee, Samuel J
Miotto, Riccardo
Richter, Felix
Zhao, Shan
Beckmann, Noam D
Naik, Nidhi
Kia, Arash
Timsina, Prem
Lala, Anuradha
Paranjpe, Manish
Golden, Eddye
Danieletto, Matteo
Singh, Manbir
Meyer, Dara
O'Reilly, Paul F
Huckins, Laura
Kovatch, Patricia
Finkelstein, Joseph
Freeman, Robert M.
Argulian, Edgar
Kasarskis, Andrew
Percha, Bethany
Aberg, Judith A
Bagiella, Emilia
Horowitz, Carol R
Murphy, Barbara
Nestler, Eric J
Schadt, Eric E
Cho, Judy H
Cordon-Cardo, Carlos
Fuster, Valentin
Charney, Dennis S
Reich, David L
Bottinger, Erwin P
Levin, Matthew A
Narula, Jagat
Fayad, Zahi A
Just, Allan C
Charney, Alexander W
Nadkarni, Girish N
Glicksberg, Benjamin S
Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title_full Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title_fullStr Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title_full_unstemmed Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title_short Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
title_sort machine learning to predict mortality and critical events in a cohort of patients with covid-19 in new york city: model development and validation
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652593/
https://www.ncbi.nlm.nih.gov/pubmed/33027032
http://dx.doi.org/10.2196/24018
work_keys_str_mv AT vaidakhil machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT somanisulaiman machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT russakadamj machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT defreitasjessicak machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT chaudhryfayzanf machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT paranjpeishan machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT johnsonkippw machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT leesamuelj machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT miottoriccardo machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT richterfelix machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT zhaoshan machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT beckmannnoamd machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT naiknidhi machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT kiaarash machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT timsinaprem machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT lalaanuradha machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT paranjpemanish machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT goldeneddye machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT danielettomatteo machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT singhmanbir machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT meyerdara machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT oreillypaulf machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT huckinslaura machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT kovatchpatricia machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT finkelsteinjoseph machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT freemanrobertm machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT argulianedgar machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT kasarskisandrew machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT perchabethany machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT abergjuditha machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT bagiellaemilia machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT horowitzcarolr machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT murphybarbara machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT nestlerericj machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT schadterice machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT chojudyh machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT cordoncardocarlos machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT fustervalentin machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT charneydenniss machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT reichdavidl machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT bottingererwinp machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT levinmatthewa machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT narulajagat machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT fayadzahia machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT justallanc machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT charneyalexanderw machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT nadkarnigirishn machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation
AT glicksbergbenjamins machinelearningtopredictmortalityandcriticaleventsinacohortofpatientswithcovid19innewyorkcitymodeldevelopmentandvalidation