Cargando…

Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking....

Descripción completa

Detalles Bibliográficos
Autores principales: Vaid, Akhil, Somani, Sulaiman, Russak, Adam J, De Freitas, Jessica K, Chaudhry, Fayzan F, Paranjpe, Ishan, Johnson, Kipp W, Lee, Samuel J, Miotto, Riccardo, Richter, Felix, Zhao, Shan, Beckmann, Noam D, Naik, Nidhi, Kia, Arash, Timsina, Prem, Lala, Anuradha, Paranjpe, Manish, Golden, Eddye, Danieletto, Matteo, Singh, Manbir, Meyer, Dara, O'Reilly, Paul F, Huckins, Laura, Kovatch, Patricia, Finkelstein, Joseph, Freeman, Robert M., Argulian, Edgar, Kasarskis, Andrew, Percha, Bethany, Aberg, Judith A, Bagiella, Emilia, Horowitz, Carol R, Murphy, Barbara, Nestler, Eric J, Schadt, Eric E, Cho, Judy H, Cordon-Cardo, Carlos, Fuster, Valentin, Charney, Dennis S, Reich, David L, Bottinger, Erwin P, Levin, Matthew A, Narula, Jagat, Fayad, Zahi A, Just, Allan C, Charney, Alexander W, Nadkarni, Girish N, Glicksberg, Benjamin S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652593/
https://www.ncbi.nlm.nih.gov/pubmed/33027032
http://dx.doi.org/10.2196/24018

Ejemplares similares