Cargando…
Boosting Knowledge Base Automatically via Few-Shot Relation Classification
Relation classification (RC) aims at extracting structural information, i.e., triplets of two entities with a relation, from free texts, which is pivotal for automatic knowledge base construction. In this paper, we investigate a fully automatic method to train a RC model which facilitates to boost t...
Autores principales: | Pang, Ning, Tan, Zhen, Xu, Hao, Xiao, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652790/ https://www.ncbi.nlm.nih.gov/pubmed/33192439 http://dx.doi.org/10.3389/fnbot.2020.584192 |
Ejemplares similares
-
Cross Modal Few-Shot Contextual Transfer for Heterogenous Image Classification
por: Chen, Zhikui, et al.
Publicado: (2021) -
Weakly Correlated Knowledge Integration for Few-shot Image Classification
por: Yang, Chun, et al.
Publicado: (2022) -
Feature fusion network based on few-shot fine-grained classification
por: Yang, Yajie, et al.
Publicado: (2023) -
Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
por: Liu, Tao, et al.
Publicado: (2023) -
Unsupervised Few-Shot Feature Learning via Self-Supervised Training
por: Ji, Zilong, et al.
Publicado: (2020)