Cargando…

A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT

This project aimed to develop and evaluate a fast and fully-automated deep-learning method applying convolutional neural networks with deep supervision (CNN-DS) for accurate hematoma segmentation and volume quantification in computed tomography (CT) scans. Non-contrast whole-head CT scans of 55 pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Arab, Ali, Chinda, Betty, Medvedev, George, Siu, William, Guo, Hui, Gu, Tao, Moreno, Sylvain, Hamarneh, Ghassan, Ester, Martin, Song, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652921/
https://www.ncbi.nlm.nih.gov/pubmed/33168895
http://dx.doi.org/10.1038/s41598-020-76459-7
Descripción
Sumario:This project aimed to develop and evaluate a fast and fully-automated deep-learning method applying convolutional neural networks with deep supervision (CNN-DS) for accurate hematoma segmentation and volume quantification in computed tomography (CT) scans. Non-contrast whole-head CT scans of 55 patients with hemorrhagic stroke were used. Individual scans were standardized to 64 axial slices of 128 × 128 voxels. Each voxel was annotated independently by experienced raters, generating a binary label of hematoma versus normal brain tissue based on majority voting. The dataset was split randomly into training (n = 45) and testing (n = 10) subsets. A CNN-DS model was built applying the training data and examined using the testing data. Performance of the CNN-DS solution was compared with three previously established methods. The CNN-DS achieved a Dice coefficient score of 0.84 ± 0.06 and recall of 0.83 ± 0.07, higher than patch-wise U-Net (< 0.76). CNN-DS average running time of 0.74 ± 0.07 s was faster than PItcHPERFeCT (> 1412 s) and slice-based U-Net (> 12 s). Comparable interrater agreement rates were observed between “method-human” vs. “human–human” (Cohen’s kappa coefficients > 0.82). The fully automated CNN-DS approach demonstrated expert-level accuracy in fast segmentation and quantification of hematoma, substantially improving over previous methods. Further research is warranted to test the CNN-DS solution as a software tool in clinical settings for effective stroke management.