Cargando…
A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT
This project aimed to develop and evaluate a fast and fully-automated deep-learning method applying convolutional neural networks with deep supervision (CNN-DS) for accurate hematoma segmentation and volume quantification in computed tomography (CT) scans. Non-contrast whole-head CT scans of 55 pati...
Autores principales: | Arab, Ali, Chinda, Betty, Medvedev, George, Siu, William, Guo, Hui, Gu, Tao, Moreno, Sylvain, Hamarneh, Ghassan, Ester, Martin, Song, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652921/ https://www.ncbi.nlm.nih.gov/pubmed/33168895 http://dx.doi.org/10.1038/s41598-020-76459-7 |
Ejemplares similares
-
Automation of CT-based haemorrhagic stroke assessment for improved clinical outcomes: study protocol and design
por: Chinda, Betty, et al.
Publicado: (2018) -
Functional MRI evaluation of the effect of carotid artery stenting: a case study demonstrating cognitive improvement
por: Chinda, Betty, et al.
Publicado: (2021) -
SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM
por: Wagner, Thorsten, et al.
Publicado: (2019) -
Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics
por: Ravanbakhsh, Siamak, et al.
Publicado: (2015) -
Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI
por: Pradella, Maurice, et al.
Publicado: (2022)