Cargando…
Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization
This paper presents the reconfiguration of control circuit designed to control four-quadrant chopper placed in the variable speed drive system (VSDS)'s DC-link. The purpose of this design is to reduce the overall total harmonic distortion THD% of input current, and the ripple factor (RF) of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653072/ https://www.ncbi.nlm.nih.gov/pubmed/33204887 http://dx.doi.org/10.1016/j.heliyon.2020.e05438 |
_version_ | 1783607826129616896 |
---|---|
author | Nadweh, Safwan Khaddam, Ola Hayeh, Ghassan Atieh, Bassan Haes Alhelou, Hassan |
author_facet | Nadweh, Safwan Khaddam, Ola Hayeh, Ghassan Atieh, Bassan Haes Alhelou, Hassan |
author_sort | Nadweh, Safwan |
collection | PubMed |
description | This paper presents the reconfiguration of control circuit designed to control four-quadrant chopper placed in the variable speed drive system (VSDS)'s DC-link. The purpose of this design is to reduce the overall total harmonic distortion THD% of input current, and the ripple factor (RF) of the DC-link current in this system. Both of Grey Wolf Algorithm (GWO) & Particle Swarm Optimization (PSO) have been used to get the optimal parameters of proportional integral PI and proportional integral differential with filter PIDN controllers. The variable speed drive system and the proposed filter have been modeled in integration with the suggested algorithms to determine the optimal values of the controllers' parameters. The grey wolf algorithm GWO outperformed the PSO algorithm in term of reaching the optimum parameters in less number of iterations in both dynamic and static work conditions. Also, the time response of the system with GWO is better than with PSO. |
format | Online Article Text |
id | pubmed-7653072 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76530722020-11-16 Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization Nadweh, Safwan Khaddam, Ola Hayeh, Ghassan Atieh, Bassan Haes Alhelou, Hassan Heliyon Research Article This paper presents the reconfiguration of control circuit designed to control four-quadrant chopper placed in the variable speed drive system (VSDS)'s DC-link. The purpose of this design is to reduce the overall total harmonic distortion THD% of input current, and the ripple factor (RF) of the DC-link current in this system. Both of Grey Wolf Algorithm (GWO) & Particle Swarm Optimization (PSO) have been used to get the optimal parameters of proportional integral PI and proportional integral differential with filter PIDN controllers. The variable speed drive system and the proposed filter have been modeled in integration with the suggested algorithms to determine the optimal values of the controllers' parameters. The grey wolf algorithm GWO outperformed the PSO algorithm in term of reaching the optimum parameters in less number of iterations in both dynamic and static work conditions. Also, the time response of the system with GWO is better than with PSO. Elsevier 2020-11-08 /pmc/articles/PMC7653072/ /pubmed/33204887 http://dx.doi.org/10.1016/j.heliyon.2020.e05438 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Nadweh, Safwan Khaddam, Ola Hayeh, Ghassan Atieh, Bassan Haes Alhelou, Hassan Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title | Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title_full | Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title_fullStr | Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title_full_unstemmed | Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title_short | Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
title_sort | steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653072/ https://www.ncbi.nlm.nih.gov/pubmed/33204887 http://dx.doi.org/10.1016/j.heliyon.2020.e05438 |
work_keys_str_mv | AT nadwehsafwan steadystateanalysisofmodernindustrialvariablespeeddrivesystemsusingcontrollersadjustedviagreywolfalgorithmparticleswarmoptimization AT khaddamola steadystateanalysisofmodernindustrialvariablespeeddrivesystemsusingcontrollersadjustedviagreywolfalgorithmparticleswarmoptimization AT hayehghassan steadystateanalysisofmodernindustrialvariablespeeddrivesystemsusingcontrollersadjustedviagreywolfalgorithmparticleswarmoptimization AT atiehbassan steadystateanalysisofmodernindustrialvariablespeeddrivesystemsusingcontrollersadjustedviagreywolfalgorithmparticleswarmoptimization AT haesalhelouhassan steadystateanalysisofmodernindustrialvariablespeeddrivesystemsusingcontrollersadjustedviagreywolfalgorithmparticleswarmoptimization |