Cargando…

ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3

Osteosarcoma (OS) is a malignant carcinoma often occurring in adolescents. The critical function of long non-coding RNAs (lncRNAs) in cancer arouses increasing attention. Nevertheless, the specific function of FOXD3 Antisense RNA 1 (FOXD3-AS1) in OS has not been understood yet. In this research, FOX...

Descripción completa

Detalles Bibliográficos
Autor principal: Wang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653078/
https://www.ncbi.nlm.nih.gov/pubmed/33204608
http://dx.doi.org/10.1016/j.jbo.2020.100335
_version_ 1783607827284099072
author Wang, Lei
author_facet Wang, Lei
author_sort Wang, Lei
collection PubMed
description Osteosarcoma (OS) is a malignant carcinoma often occurring in adolescents. The critical function of long non-coding RNAs (lncRNAs) in cancer arouses increasing attention. Nevertheless, the specific function of FOXD3 Antisense RNA 1 (FOXD3-AS1) in OS has not been understood yet. In this research, FOXD3-AS1 showed strengthened level in OS specimens and cell lines, and its deficiency restrained cell migration, invasion and epithelial-to-mesenchymal transition (EMT) in OS. Then, we confirmed the interaction of FOXD3-AS1 with microRNA-296-5p (miR-296-5p) and that miR-296-5p overexpression blocked OS cell migration, invasion and EMT. Besides, miR-296-5p targeted zinc finger CCHC-type containing 3 (ZCCHC3), and FOXD3-AS1 released ZCCHC3 via sequestering miR-296-5p. Moreover, rescue assays delineated that ZCCHC3 upregulation neutralized the inhibitory effect of FOXD3-AS1 depletion on in vitro behaviors and in vivo tumorigenesis in OS. In addition, E74 like ETS transcription factor 1 (ELF1) stimulated FOXD3-AS1 transcription, and ELF1 silence-suppressed malignant phenotypes of OS cells were offset by FOXD3-AS1 upregulation. Overall, present work elucidated that ELF1-activated FOXD3-AS1 aggravated cell migration, invasion and EMT in OS via absorbing miR-296-5p to augment ZCCHC3 expression, which might provide potential guidance for researchers to find effective targets for OS treatment.
format Online
Article
Text
id pubmed-7653078
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76530782020-11-16 ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3 Wang, Lei J Bone Oncol Research Article Osteosarcoma (OS) is a malignant carcinoma often occurring in adolescents. The critical function of long non-coding RNAs (lncRNAs) in cancer arouses increasing attention. Nevertheless, the specific function of FOXD3 Antisense RNA 1 (FOXD3-AS1) in OS has not been understood yet. In this research, FOXD3-AS1 showed strengthened level in OS specimens and cell lines, and its deficiency restrained cell migration, invasion and epithelial-to-mesenchymal transition (EMT) in OS. Then, we confirmed the interaction of FOXD3-AS1 with microRNA-296-5p (miR-296-5p) and that miR-296-5p overexpression blocked OS cell migration, invasion and EMT. Besides, miR-296-5p targeted zinc finger CCHC-type containing 3 (ZCCHC3), and FOXD3-AS1 released ZCCHC3 via sequestering miR-296-5p. Moreover, rescue assays delineated that ZCCHC3 upregulation neutralized the inhibitory effect of FOXD3-AS1 depletion on in vitro behaviors and in vivo tumorigenesis in OS. In addition, E74 like ETS transcription factor 1 (ELF1) stimulated FOXD3-AS1 transcription, and ELF1 silence-suppressed malignant phenotypes of OS cells were offset by FOXD3-AS1 upregulation. Overall, present work elucidated that ELF1-activated FOXD3-AS1 aggravated cell migration, invasion and EMT in OS via absorbing miR-296-5p to augment ZCCHC3 expression, which might provide potential guidance for researchers to find effective targets for OS treatment. Elsevier 2020-10-22 /pmc/articles/PMC7653078/ /pubmed/33204608 http://dx.doi.org/10.1016/j.jbo.2020.100335 Text en © 2020 The Author http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Wang, Lei
ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title_full ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title_fullStr ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title_full_unstemmed ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title_short ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3
title_sort elf1-activated foxd3-as1 promotes the migration, invasion and emt of osteosarcoma cells via sponging mir-296-5p to upregulate zcchc3
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653078/
https://www.ncbi.nlm.nih.gov/pubmed/33204608
http://dx.doi.org/10.1016/j.jbo.2020.100335
work_keys_str_mv AT wanglei elf1activatedfoxd3as1promotesthemigrationinvasionandemtofosteosarcomacellsviaspongingmir2965ptoupregulatezcchc3