Cargando…

Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases

BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and he...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Wenhua, Liu, Dan, Li, Min, Wang, Wei, Qin, Zheng, Zhang, Jian, Zhang, Yong, Hu, Yang, Bao, Hairong, Xiang, Yi, Wang, Bo, Wu, Jing, Sun, Jianyu, Hu, Chengping, Ye, Xianwei, Zhang, Xiangyan, Xiao, Wei, Yun, Chunmei, Sun, Dejun, Chang, Ning, Zhang, Yunhui, Zhao, Jianping, Zhang, Xin, Xu, Jinfu, Wu, Di, Liu, Xiaoju, Guo, Yubiao, Zhang, Qichuan, Zhang, Wei, Yang, Lan, Li, Zhanqing, Zhang, Xiaoju, Han, Baohui, Tong, Zhaohui, He, Jianxing, Qu, Jieming, Fan, Jian-Bing, Zhong, Nanshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653103/
https://www.ncbi.nlm.nih.gov/pubmed/33209621
http://dx.doi.org/10.21037/tlcr-20-701
_version_ 1783607832448335872
author Liang, Wenhua
Liu, Dan
Li, Min
Wang, Wei
Qin, Zheng
Zhang, Jian
Zhang, Yong
Hu, Yang
Bao, Hairong
Xiang, Yi
Wang, Bo
Wu, Jing
Sun, Jianyu
Hu, Chengping
Ye, Xianwei
Zhang, Xiangyan
Xiao, Wei
Yun, Chunmei
Sun, Dejun
Wang, Wei
Chang, Ning
Zhang, Yunhui
Zhao, Jianping
Zhang, Xin
Xu, Jinfu
Wu, Di
Liu, Xiaoju
Guo, Yubiao
Zhang, Qichuan
Zhang, Wei
Yang, Lan
Li, Zhanqing
Zhang, Xiaoju
Han, Baohui
Tong, Zhaohui
He, Jianxing
Qu, Jieming
Fan, Jian-Bing
Zhong, Nanshan
author_facet Liang, Wenhua
Liu, Dan
Li, Min
Wang, Wei
Qin, Zheng
Zhang, Jian
Zhang, Yong
Hu, Yang
Bao, Hairong
Xiang, Yi
Wang, Bo
Wu, Jing
Sun, Jianyu
Hu, Chengping
Ye, Xianwei
Zhang, Xiangyan
Xiao, Wei
Yun, Chunmei
Sun, Dejun
Wang, Wei
Chang, Ning
Zhang, Yunhui
Zhao, Jianping
Zhang, Xin
Xu, Jinfu
Wu, Di
Liu, Xiaoju
Guo, Yubiao
Zhang, Qichuan
Zhang, Wei
Yang, Lan
Li, Zhanqing
Zhang, Xiaoju
Han, Baohui
Tong, Zhaohui
He, Jianxing
Qu, Jieming
Fan, Jian-Bing
Zhong, Nanshan
author_sort Liang, Wenhua
collection PubMed
description BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and healthcare costs is still lacking. The aim of the present protocol is to evaluate the effectiveness of using a liquid biopsy classifier to diagnose nodules compared to physician estimates and whether the classifier can reduce the number of unnecessary biopsies in benign cases. METHODS: A prospective cohort of 10,560 patients enrolled at 23 clinical centers in China with non-calcified pulmonary nodules, ranging from 0.5 to 3 cm in diameter, indicated by LDCT or CT will be included. After signed consent forms, the participants’ pulmonary nodules will be assessed using three evaluation tools: (I) physician cancer probability estimates (II) validated lung nodule risk models, including Mayo Clinic and Veteran’s Affairs models (III) ctDNA methylation classifier previously established. Each patient will undergo LDCT/CT follow-ups for 2 to 3 years and their information and one blood sample will be collected at baseline, 3, 6, 12, 24 and 36 months. The primary study outcomes will be the diagnostic accuracy of the methylation classifier in the cohort. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) will be used to compare the diagnostic value of each testing tool in differentiating benign and malignant pulmonary nodules. DISCUSSION: We are conducting an observational study to explore the accuracy of using a ctDNA methylation classifier for incidental lung nodules diagnosis TRIAL REGISTRATION: Clinicaltrials.gov NCT03651986.
format Online
Article
Text
id pubmed-7653103
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher AME Publishing Company
record_format MEDLINE/PubMed
spelling pubmed-76531032020-11-17 Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases Liang, Wenhua Liu, Dan Li, Min Wang, Wei Qin, Zheng Zhang, Jian Zhang, Yong Hu, Yang Bao, Hairong Xiang, Yi Wang, Bo Wu, Jing Sun, Jianyu Hu, Chengping Ye, Xianwei Zhang, Xiangyan Xiao, Wei Yun, Chunmei Sun, Dejun Wang, Wei Chang, Ning Zhang, Yunhui Zhao, Jianping Zhang, Xin Xu, Jinfu Wu, Di Liu, Xiaoju Guo, Yubiao Zhang, Qichuan Zhang, Wei Yang, Lan Li, Zhanqing Zhang, Xiaoju Han, Baohui Tong, Zhaohui He, Jianxing Qu, Jieming Fan, Jian-Bing Zhong, Nanshan Transl Lung Cancer Res Study Protocol BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and healthcare costs is still lacking. The aim of the present protocol is to evaluate the effectiveness of using a liquid biopsy classifier to diagnose nodules compared to physician estimates and whether the classifier can reduce the number of unnecessary biopsies in benign cases. METHODS: A prospective cohort of 10,560 patients enrolled at 23 clinical centers in China with non-calcified pulmonary nodules, ranging from 0.5 to 3 cm in diameter, indicated by LDCT or CT will be included. After signed consent forms, the participants’ pulmonary nodules will be assessed using three evaluation tools: (I) physician cancer probability estimates (II) validated lung nodule risk models, including Mayo Clinic and Veteran’s Affairs models (III) ctDNA methylation classifier previously established. Each patient will undergo LDCT/CT follow-ups for 2 to 3 years and their information and one blood sample will be collected at baseline, 3, 6, 12, 24 and 36 months. The primary study outcomes will be the diagnostic accuracy of the methylation classifier in the cohort. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) will be used to compare the diagnostic value of each testing tool in differentiating benign and malignant pulmonary nodules. DISCUSSION: We are conducting an observational study to explore the accuracy of using a ctDNA methylation classifier for incidental lung nodules diagnosis TRIAL REGISTRATION: Clinicaltrials.gov NCT03651986. AME Publishing Company 2020-10 /pmc/articles/PMC7653103/ /pubmed/33209621 http://dx.doi.org/10.21037/tlcr-20-701 Text en 2020 Translational Lung Cancer Research. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Study Protocol
Liang, Wenhua
Liu, Dan
Li, Min
Wang, Wei
Qin, Zheng
Zhang, Jian
Zhang, Yong
Hu, Yang
Bao, Hairong
Xiang, Yi
Wang, Bo
Wu, Jing
Sun, Jianyu
Hu, Chengping
Ye, Xianwei
Zhang, Xiangyan
Xiao, Wei
Yun, Chunmei
Sun, Dejun
Wang, Wei
Chang, Ning
Zhang, Yunhui
Zhao, Jianping
Zhang, Xin
Xu, Jinfu
Wu, Di
Liu, Xiaoju
Guo, Yubiao
Zhang, Qichuan
Zhang, Wei
Yang, Lan
Li, Zhanqing
Zhang, Xiaoju
Han, Baohui
Tong, Zhaohui
He, Jianxing
Qu, Jieming
Fan, Jian-Bing
Zhong, Nanshan
Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title_full Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title_fullStr Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title_full_unstemmed Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title_short Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
title_sort evaluating the diagnostic accuracy of a ctdna methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653103/
https://www.ncbi.nlm.nih.gov/pubmed/33209621
http://dx.doi.org/10.21037/tlcr-20-701
work_keys_str_mv AT liangwenhua evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT liudan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT limin evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT wangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT qinzheng evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangjian evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangyong evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT huyang evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT baohairong evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT xiangyi evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT wangbo evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT wujing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT sunjianyu evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT huchengping evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT yexianwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangxiangyan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT xiaowei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT yunchunmei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT sundejun evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT wangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT changning evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangyunhui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhaojianping evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangxin evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT xujinfu evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT wudi evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT liuxiaoju evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT guoyubiao evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangqichuan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT yanglan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT lizhanqing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhangxiaoju evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT hanbaohui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT tongzhaohui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT hejianxing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT qujieming evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT fanjianbing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases
AT zhongnanshan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases