Cargando…
Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases
BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and he...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653103/ https://www.ncbi.nlm.nih.gov/pubmed/33209621 http://dx.doi.org/10.21037/tlcr-20-701 |
_version_ | 1783607832448335872 |
---|---|
author | Liang, Wenhua Liu, Dan Li, Min Wang, Wei Qin, Zheng Zhang, Jian Zhang, Yong Hu, Yang Bao, Hairong Xiang, Yi Wang, Bo Wu, Jing Sun, Jianyu Hu, Chengping Ye, Xianwei Zhang, Xiangyan Xiao, Wei Yun, Chunmei Sun, Dejun Wang, Wei Chang, Ning Zhang, Yunhui Zhao, Jianping Zhang, Xin Xu, Jinfu Wu, Di Liu, Xiaoju Guo, Yubiao Zhang, Qichuan Zhang, Wei Yang, Lan Li, Zhanqing Zhang, Xiaoju Han, Baohui Tong, Zhaohui He, Jianxing Qu, Jieming Fan, Jian-Bing Zhong, Nanshan |
author_facet | Liang, Wenhua Liu, Dan Li, Min Wang, Wei Qin, Zheng Zhang, Jian Zhang, Yong Hu, Yang Bao, Hairong Xiang, Yi Wang, Bo Wu, Jing Sun, Jianyu Hu, Chengping Ye, Xianwei Zhang, Xiangyan Xiao, Wei Yun, Chunmei Sun, Dejun Wang, Wei Chang, Ning Zhang, Yunhui Zhao, Jianping Zhang, Xin Xu, Jinfu Wu, Di Liu, Xiaoju Guo, Yubiao Zhang, Qichuan Zhang, Wei Yang, Lan Li, Zhanqing Zhang, Xiaoju Han, Baohui Tong, Zhaohui He, Jianxing Qu, Jieming Fan, Jian-Bing Zhong, Nanshan |
author_sort | Liang, Wenhua |
collection | PubMed |
description | BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and healthcare costs is still lacking. The aim of the present protocol is to evaluate the effectiveness of using a liquid biopsy classifier to diagnose nodules compared to physician estimates and whether the classifier can reduce the number of unnecessary biopsies in benign cases. METHODS: A prospective cohort of 10,560 patients enrolled at 23 clinical centers in China with non-calcified pulmonary nodules, ranging from 0.5 to 3 cm in diameter, indicated by LDCT or CT will be included. After signed consent forms, the participants’ pulmonary nodules will be assessed using three evaluation tools: (I) physician cancer probability estimates (II) validated lung nodule risk models, including Mayo Clinic and Veteran’s Affairs models (III) ctDNA methylation classifier previously established. Each patient will undergo LDCT/CT follow-ups for 2 to 3 years and their information and one blood sample will be collected at baseline, 3, 6, 12, 24 and 36 months. The primary study outcomes will be the diagnostic accuracy of the methylation classifier in the cohort. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) will be used to compare the diagnostic value of each testing tool in differentiating benign and malignant pulmonary nodules. DISCUSSION: We are conducting an observational study to explore the accuracy of using a ctDNA methylation classifier for incidental lung nodules diagnosis TRIAL REGISTRATION: Clinicaltrials.gov NCT03651986. |
format | Online Article Text |
id | pubmed-7653103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-76531032020-11-17 Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases Liang, Wenhua Liu, Dan Li, Min Wang, Wei Qin, Zheng Zhang, Jian Zhang, Yong Hu, Yang Bao, Hairong Xiang, Yi Wang, Bo Wu, Jing Sun, Jianyu Hu, Chengping Ye, Xianwei Zhang, Xiangyan Xiao, Wei Yun, Chunmei Sun, Dejun Wang, Wei Chang, Ning Zhang, Yunhui Zhao, Jianping Zhang, Xin Xu, Jinfu Wu, Di Liu, Xiaoju Guo, Yubiao Zhang, Qichuan Zhang, Wei Yang, Lan Li, Zhanqing Zhang, Xiaoju Han, Baohui Tong, Zhaohui He, Jianxing Qu, Jieming Fan, Jian-Bing Zhong, Nanshan Transl Lung Cancer Res Study Protocol BACKGROUND: Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and healthcare costs is still lacking. The aim of the present protocol is to evaluate the effectiveness of using a liquid biopsy classifier to diagnose nodules compared to physician estimates and whether the classifier can reduce the number of unnecessary biopsies in benign cases. METHODS: A prospective cohort of 10,560 patients enrolled at 23 clinical centers in China with non-calcified pulmonary nodules, ranging from 0.5 to 3 cm in diameter, indicated by LDCT or CT will be included. After signed consent forms, the participants’ pulmonary nodules will be assessed using three evaluation tools: (I) physician cancer probability estimates (II) validated lung nodule risk models, including Mayo Clinic and Veteran’s Affairs models (III) ctDNA methylation classifier previously established. Each patient will undergo LDCT/CT follow-ups for 2 to 3 years and their information and one blood sample will be collected at baseline, 3, 6, 12, 24 and 36 months. The primary study outcomes will be the diagnostic accuracy of the methylation classifier in the cohort. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) will be used to compare the diagnostic value of each testing tool in differentiating benign and malignant pulmonary nodules. DISCUSSION: We are conducting an observational study to explore the accuracy of using a ctDNA methylation classifier for incidental lung nodules diagnosis TRIAL REGISTRATION: Clinicaltrials.gov NCT03651986. AME Publishing Company 2020-10 /pmc/articles/PMC7653103/ /pubmed/33209621 http://dx.doi.org/10.21037/tlcr-20-701 Text en 2020 Translational Lung Cancer Research. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Study Protocol Liang, Wenhua Liu, Dan Li, Min Wang, Wei Qin, Zheng Zhang, Jian Zhang, Yong Hu, Yang Bao, Hairong Xiang, Yi Wang, Bo Wu, Jing Sun, Jianyu Hu, Chengping Ye, Xianwei Zhang, Xiangyan Xiao, Wei Yun, Chunmei Sun, Dejun Wang, Wei Chang, Ning Zhang, Yunhui Zhao, Jianping Zhang, Xin Xu, Jinfu Wu, Di Liu, Xiaoju Guo, Yubiao Zhang, Qichuan Zhang, Wei Yang, Lan Li, Zhanqing Zhang, Xiaoju Han, Baohui Tong, Zhaohui He, Jianxing Qu, Jieming Fan, Jian-Bing Zhong, Nanshan Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title | Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title_full | Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title_fullStr | Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title_full_unstemmed | Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title_short | Evaluating the diagnostic accuracy of a ctDNA methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
title_sort | evaluating the diagnostic accuracy of a ctdna methylation classifier for incidental lung nodules: protocol for a prospective, observational, and multicenter clinical trial of 10,560 cases |
topic | Study Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653103/ https://www.ncbi.nlm.nih.gov/pubmed/33209621 http://dx.doi.org/10.21037/tlcr-20-701 |
work_keys_str_mv | AT liangwenhua evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT liudan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT limin evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT wangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT qinzheng evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangjian evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangyong evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT huyang evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT baohairong evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT xiangyi evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT wangbo evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT wujing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT sunjianyu evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT huchengping evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT yexianwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangxiangyan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT xiaowei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT yunchunmei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT sundejun evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT wangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT changning evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangyunhui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhaojianping evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangxin evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT xujinfu evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT wudi evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT liuxiaoju evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT guoyubiao evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangqichuan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangwei evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT yanglan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT lizhanqing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhangxiaoju evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT hanbaohui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT tongzhaohui evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT hejianxing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT qujieming evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT fanjianbing evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases AT zhongnanshan evaluatingthediagnosticaccuracyofactdnamethylationclassifierforincidentallungnodulesprotocolforaprospectiveobservationalandmulticenterclinicaltrialof10560cases |