Cargando…

Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy

Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Tiantian, Zou, Liqing, Ni, Jianjiao, Chu, Xiao, Zhu, Zhengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653144/
https://www.ncbi.nlm.nih.gov/pubmed/33209629
http://dx.doi.org/10.21037/tlcr-20-511
Descripción
Sumario:Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of immunotherapy and has raised important questions for future study, such as the future directions of radiation therapy for LA-NSCLC in the era of immunotherapy. Modern radiotherapy techniques such as three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) provide opportunities for improved target conformity and reduced normal-tissue exposure. However, the low-dose radiation volume brought by IMRT and its effects on the immune system deserve particular attention when combing radiotherapy and immunotherapy. Particle radiotherapy offers dosimetric advantages and exhibits great immunoregulatory potential. With the ongoing improvement in particle radiotherapy techniques and knowledge, the combination of immunotherapy and particle radiotherapy has tremendous potential to improve treatment outcomes. Of particular importance are questions on the optimal radiation schedule in the settings of radio-immunotherapy. Strategies for the reduction of the irradiated field such as involved-field irradiation (IFI) and omission of clinical target volume (CTV) hold promise for better preservation of immune function while not compromising locoregional and distant control. In addition, different dose-fractionation regimens can have diverse effects on the immune system. Thus, prospective trials are urgently needed to establish the optimal dose fractionation regimen. Moreover, personalized radiotherapy which allows the tailoring of radiation dose to each individual’s genetic background and immune state is of critical importance in maximizing the benefit of radiation to patients with LA-NSCLC.