Cargando…
Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance
OBJECTIVE: The maturation of neural network-based techniques in combination with the availability of large sleep datasets has increased the interest in alternative methods of sleep monitoring. For unobtrusive sleep staging, the most promising algorithms are based on heart rate variability computed f...
Autores principales: | van Gilst, M. M., Wulterkens, B. M., Fonseca, P., Radha, M., Ross, M., Moreau, A., Cerny, A., Anderer, P., Long, X., van Dijk, J. P., Overeem, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653690/ https://www.ncbi.nlm.nih.gov/pubmed/33168051 http://dx.doi.org/10.1186/s13104-020-05355-0 |
Ejemplares similares
-
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Radha, Mustafa, et al.
Publicado: (2021) -
It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography
por: Wulterkens, Bernice M, et al.
Publicado: (2021) -
Wearable monitoring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography
por: Papini, Gabriele B., et al.
Publicado: (2020) -
A computationally efficient algorithm for wearable sleep staging in clinical populations
por: Fonseca, Pedro, et al.
Publicado: (2023) -
The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing
por: Xie, Jiali, et al.
Publicado: (2023)