Cargando…

Toward the identification of a phytocannabinoid-like compound in the flowers of a South African medicinal plant (Leonotis leonurus)

OBJECTIVE: Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunter, E., Stander, M., Kossmann, J., Chakraborty, S., Prince, S., Peters, S., Loedolff, Bianke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653773/
https://www.ncbi.nlm.nih.gov/pubmed/33172494
http://dx.doi.org/10.1186/s13104-020-05372-z
Descripción
Sumario:OBJECTIVE: Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds. RESULTS: Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.