Cargando…
Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
There is a growing demand for the uptake of modern artificial intelligence technologies within healthcare systems. Many of these technologies exploit historical patient health data to build powerful predictive models that can be used to improve diagnosis and understanding of disease. However, there...
Autores principales: | Tucker, Allan, Wang, Zhenchen, Rotalinti, Ylenia, Myles, Puja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653933/ https://www.ncbi.nlm.nih.gov/pubmed/33299100 http://dx.doi.org/10.1038/s41746-020-00353-9 |
Ejemplares similares
-
Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility
por: Smith, Aiden, et al.
Publicado: (2022) -
Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires
por: Pérez-Porras, Fernando-Juan, et al.
Publicado: (2021) -
Software Defect Prediction for Healthcare Big Data: An Empirical Evaluation of Machine Learning Techniques
por: Khan, Bilal, et al.
Publicado: (2021) -
Condition Monitoring of Ball Bearings Based on Machine Learning with Synthetically Generated Data
por: Kahr, Matthias, et al.
Publicado: (2022) -
Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments
por: Shi, Jingpu, et al.
Publicado: (2022)