Cargando…
Memory-assisted reinforcement learning for diverse molecular de novo design
In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desira...
Autores principales: | Blaschke, Thomas, Engkvist, Ola, Bajorath, Jürgen, Chen, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654024/ https://www.ncbi.nlm.nih.gov/pubmed/33292554 http://dx.doi.org/10.1186/s13321-020-00473-0 |
Ejemplares similares
-
Molecular de-novo design through deep reinforcement learning
por: Olivecrona, Marcus, et al.
Publicado: (2017) -
Application of Generative Autoencoder in De Novo Molecular Design
por: Blaschke, Thomas, et al.
Publicado: (2017) -
Human-in-the-loop assisted de novo molecular design
por: Sundin, Iiris, et al.
Publicado: (2022) -
Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability
por: Laufkötter, Oliver, et al.
Publicado: (2019) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020)