Cargando…

Wild boar behaviour during live-trap capture in a corral-style trap: implications for animal welfare

BACKGROUND: Wildlife traps are used in many countries without evaluation of their effect on animal welfare. Trap-capture of wild animals should minimise negative effects on animal welfare, irrespective of whether the animals are trapped for hunting, research, or management purposes. Live-trap captur...

Descripción completa

Detalles Bibliográficos
Autores principales: Fahlman, Åsa, Lindsjö, Johan, Norling, Therese Arvén, Kjellander, Petter, Ågren, Erik Olof, Bergvall, Ulrika Alm
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654165/
https://www.ncbi.nlm.nih.gov/pubmed/33168032
http://dx.doi.org/10.1186/s13028-020-00557-9
Descripción
Sumario:BACKGROUND: Wildlife traps are used in many countries without evaluation of their effect on animal welfare. Trap-capture of wild animals should minimise negative effects on animal welfare, irrespective of whether the animals are trapped for hunting, research, or management purposes. Live-trap capture of wild boar (Sus scrofa) followed by killing inside the trap by gunshot is a recently introduced but disputed hunting method in Sweden. Approval of trap constructions is based on gross necropsy findings of 20 trapped and shot wild boars. For improved animal welfare evaluation, our aim was to study wild boar behaviour during live-trapping in a 16 m(2) square corral-style trap. Behavioural assessments were conducted after filming 12 capture events of in total 38 wild boars (five adults, 20 subadults, 13 piglets). Selected behavioural traits were compared with pathological changes (trap-related lesions) found at necropsy of the 20 subadults, to determine if these variables were useful proxies of capture-induced stress in wild boar. RESULTS: The wild boars spent less time resting in the evening than in the night and morning. Using Friedman’s ANOVA, there was an overall difference in the time spent foraging. However, we only found a difference between the evening and morning in the Wilcoxon matched pairs test after the Sequential Bonferroni correction, where the wild boars spent more time foraging in the evening than in the morning. Single captured individuals showed more escape behaviours and reacted more strongly to external stimuli than individuals captured in a group. It was more common for animals to charge against the mesh walls of the trap upon human approach compared to upon initial capture when the trap door closed. Trap-related pathological findings due to trauma were documented in 13 of the 20 subadults that were necropsied. Behavioural alterations indicative of capture-induced stress (e.g. charging into the trap walls) were documented in trapped wild boars with no or minor physical injuries (e.g. skin abrasions, subcutaneous haemorrhage). CONCLUSIONS: Behavioural assessment provided valuable information for determination of capture-induced stress in wild boar when evaluating live-trapping in a corral-style trap, whereas pathological evaluation through necropsy did not fully reflect the animal welfare aspects of live-trapping. We emphasize the inclusion of species-specific behavioural data assessment for evaluation of capture-related stress during live-trapping and for testing of new trap constructions before approval.