Cargando…
The translational landscape of SARS-CoV-2 and infected cells
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in respon...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654850/ https://www.ncbi.nlm.nih.gov/pubmed/33173862 http://dx.doi.org/10.1101/2020.11.03.367516 |
_version_ | 1783608131207561216 |
---|---|
author | Puray-Chavez, Maritza Lee, Nakyung Tenneti, Kasyap Wang, Yiqing Vuong, Hung R. Liu, Yating Horani, Amjad Huang, Tao Gunsten, Sean P. Case, James B. Yang, Wei Diamond, Michael S. Brody, Steven L. Dougherty, Joseph Kutluay, Sebla B. |
author_facet | Puray-Chavez, Maritza Lee, Nakyung Tenneti, Kasyap Wang, Yiqing Vuong, Hung R. Liu, Yating Horani, Amjad Huang, Tao Gunsten, Sean P. Case, James B. Yang, Wei Diamond, Michael S. Brody, Steven L. Dougherty, Joseph Kutluay, Sebla B. |
author_sort | Puray-Chavez, Maritza |
collection | PubMed |
description | SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. |
format | Online Article Text |
id | pubmed-7654850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-76548502020-11-11 The translational landscape of SARS-CoV-2 and infected cells Puray-Chavez, Maritza Lee, Nakyung Tenneti, Kasyap Wang, Yiqing Vuong, Hung R. Liu, Yating Horani, Amjad Huang, Tao Gunsten, Sean P. Case, James B. Yang, Wei Diamond, Michael S. Brody, Steven L. Dougherty, Joseph Kutluay, Sebla B. bioRxiv Article SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. Cold Spring Harbor Laboratory 2021-10-07 /pmc/articles/PMC7654850/ /pubmed/33173862 http://dx.doi.org/10.1101/2020.11.03.367516 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Puray-Chavez, Maritza Lee, Nakyung Tenneti, Kasyap Wang, Yiqing Vuong, Hung R. Liu, Yating Horani, Amjad Huang, Tao Gunsten, Sean P. Case, James B. Yang, Wei Diamond, Michael S. Brody, Steven L. Dougherty, Joseph Kutluay, Sebla B. The translational landscape of SARS-CoV-2 and infected cells |
title | The translational landscape of SARS-CoV-2 and infected cells |
title_full | The translational landscape of SARS-CoV-2 and infected cells |
title_fullStr | The translational landscape of SARS-CoV-2 and infected cells |
title_full_unstemmed | The translational landscape of SARS-CoV-2 and infected cells |
title_short | The translational landscape of SARS-CoV-2 and infected cells |
title_sort | translational landscape of sars-cov-2 and infected cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654850/ https://www.ncbi.nlm.nih.gov/pubmed/33173862 http://dx.doi.org/10.1101/2020.11.03.367516 |
work_keys_str_mv | AT puraychavezmaritza thetranslationallandscapeofsarscov2andinfectedcells AT leenakyung thetranslationallandscapeofsarscov2andinfectedcells AT tennetikasyap thetranslationallandscapeofsarscov2andinfectedcells AT wangyiqing thetranslationallandscapeofsarscov2andinfectedcells AT vuonghungr thetranslationallandscapeofsarscov2andinfectedcells AT liuyating thetranslationallandscapeofsarscov2andinfectedcells AT horaniamjad thetranslationallandscapeofsarscov2andinfectedcells AT huangtao thetranslationallandscapeofsarscov2andinfectedcells AT gunstenseanp thetranslationallandscapeofsarscov2andinfectedcells AT casejamesb thetranslationallandscapeofsarscov2andinfectedcells AT yangwei thetranslationallandscapeofsarscov2andinfectedcells AT diamondmichaels thetranslationallandscapeofsarscov2andinfectedcells AT brodystevenl thetranslationallandscapeofsarscov2andinfectedcells AT doughertyjoseph thetranslationallandscapeofsarscov2andinfectedcells AT kutluayseblab thetranslationallandscapeofsarscov2andinfectedcells AT puraychavezmaritza translationallandscapeofsarscov2andinfectedcells AT leenakyung translationallandscapeofsarscov2andinfectedcells AT tennetikasyap translationallandscapeofsarscov2andinfectedcells AT wangyiqing translationallandscapeofsarscov2andinfectedcells AT vuonghungr translationallandscapeofsarscov2andinfectedcells AT liuyating translationallandscapeofsarscov2andinfectedcells AT horaniamjad translationallandscapeofsarscov2andinfectedcells AT huangtao translationallandscapeofsarscov2andinfectedcells AT gunstenseanp translationallandscapeofsarscov2andinfectedcells AT casejamesb translationallandscapeofsarscov2andinfectedcells AT yangwei translationallandscapeofsarscov2andinfectedcells AT diamondmichaels translationallandscapeofsarscov2andinfectedcells AT brodystevenl translationallandscapeofsarscov2andinfectedcells AT doughertyjoseph translationallandscapeofsarscov2andinfectedcells AT kutluayseblab translationallandscapeofsarscov2andinfectedcells |