Cargando…
AI-Powered Effective Lens Position Prediction Improves the Accuracy of Existing Lens Formulas
AIMS: To assess whether incorporating a machine learning (ML) method for accurate prediction of postoperative anterior chamber depth (ACD) improves the refraction prediction performance of existing intraocular lens (IOL) calculation formulas. METHODS: A dataset of 4806 cataract patients were gathere...
Autores principales: | Li, Tingyang, Stein, Joshua D., Nallasamy, Nambi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654911/ https://www.ncbi.nlm.nih.gov/pubmed/33173915 http://dx.doi.org/10.1101/2020.10.29.20222539 |
Ejemplares similares
-
AI-powered effective lens position prediction improves the accuracy of existing lens formulas
por: Li, Tingyang, et al.
Publicado: (2022) -
Ray tracing intraocular lens calculation performance improved by AI-powered postoperative lens position prediction
por: Li, Tingyang, et al.
Publicado: (2023) -
Gradient Boosting Decision Tree Algorithm for the Prediction of Postoperative Intraocular Lens Position in Cataract Surgery
por: Li, Tingyang, et al.
Publicado: (2020) -
MAEPI and CIR: New Metrics for Robust Evaluation of the Prediction Performance of AI-Based IOL Formulas
por: Li, Tingyang, et al.
Publicado: (2023) -
Evaluation of the Nallasamy formula: a stacking ensemble machine learning method for refraction prediction in cataract surgery
por: Li, Tingyang, et al.
Publicado: (2023)