Cargando…

Polymerase I and transcript release factor transgenic mice show impaired function of hematopoietic stem cells

The age-dependent decline in stem cell function plays a critical role in aging, although the molecular mechanisms remain unclear. PTRF/Cavin-1 is an essential component in the biogenesis and function of caveolae, which regulates cell proliferation, endocytosis, signal transduction and senescence. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Lin, Lyu, Ying, Shi, Guiying, Li, Keya, Huang, Yiying, Ma, Yuanwu, Cong, Yu-Sheng, Zhang, Lianfeng, Qin, Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655181/
https://www.ncbi.nlm.nih.gov/pubmed/33087586
http://dx.doi.org/10.18632/aging.103729
Descripción
Sumario:The age-dependent decline in stem cell function plays a critical role in aging, although the molecular mechanisms remain unclear. PTRF/Cavin-1 is an essential component in the biogenesis and function of caveolae, which regulates cell proliferation, endocytosis, signal transduction and senescence. This study aimed to analyze the role of PTRF in hematopoietic stem cells (HSCs) senescence using PTRF transgenic mice. Flow cytometry was used to detect the frequency of immune cells and hematopoietic stem/progenitor cells (HSCs and HPCs). The results showed than the HSC compartment was significantly expanded in the bone marrow of PTRF transgenic mice compared to age-matched wild-type (WT) mice, and exhibited the senescent phenotype characterized by G1 cell cycle arrest, increased SA-β-Gal activity and high levels of reactive oxygen species (ROS). The PTRF-overexpressing HSCs also showed significantly lower self-renewal and ability to reconstitute hematopoiesis in vitro and in vivo. Real-time PCR was performed to analyze the expression levels of senescence-related genes. PTRF induced HSCs senescence via the ROS-p38-p16 and caveolin-1-p53-p21 pathways. Furthermore, the PTRF(+)cav-1(-/-) mice showed similar HSCs function as WT mice, indicating that PTRF induces senescence in HSCs partly through caveolin-1. Thus PTRF impaired HSCs aging partly via caveolin-1.