Cargando…
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics
Accurately modelling the nonlinear dynamics of a system from measurement data is a challenging yet vital topic. The sparse identification of nonlinear dynamics (SINDy) algorithm is one approach to discover dynamical systems models from data. Although extensions have been developed to identify implic...
Autores principales: | Kaheman, Kadierdan, Kutz, J. Nathan, Brunton, Steven L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655768/ https://www.ncbi.nlm.nih.gov/pubmed/33214760 http://dx.doi.org/10.1098/rspa.2020.0279 |
Ejemplares similares
-
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
por: Fasel, U., et al.
Publicado: (2022) -
The experimental multi-arm pendulum on a cart: A benchmark system for chaos, learning, and control
por: Kaheman, Kadierdan, et al.
Publicado: (2023) -
SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis
por: Naozuka, Gustavo T., et al.
Publicado: (2022) -
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
por: Kaiser, E., et al.
Publicado: (2018) -
Sparse nonlinear models of chaotic electroconvection
por: Guan, Yifei, et al.
Publicado: (2021)