Cargando…
Enhancing protein backbone angle prediction by using simpler models of deep neural networks
Protein structure prediction is a grand challenge. Prediction of protein structures via the representations using backbone dihedral angles has recently achieved significant progress along with the on-going surge of deep neural network (DNN) research in general. However, we observe that in the protei...
Autores principales: | Mataeimoghadam, Fereshteh, Newton, M. A. Hakim, Dehzangi, Abdollah, Karim, Abdul, Jayaram, B., Ranganathan, Shoba, Sattar, Abdul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655839/ https://www.ncbi.nlm.nih.gov/pubmed/33173130 http://dx.doi.org/10.1038/s41598-020-76317-6 |
Ejemplares similares
-
Author Correction: Enhancing protein backbone angle prediction by using simpler models of deep neural networks
por: Mataeimoghadam, Fereshteh, et al.
Publicado: (2021) -
Secondary structure specific simpler prediction models for protein backbone angles
por: Newton, M. A. Hakim, et al.
Publicado: (2022) -
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
por: Heffernan, Rhys, et al.
Publicado: (2015) -
Quantitative Toxicity Prediction via Meta Ensembling
of Multitask Deep Learning Models
por: Karim, Abdul, et al.
Publicado: (2021) -
Role of solvent accessibility for aggregation-prone patches in protein folding
por: Mishra, Avinash, et al.
Publicado: (2018)