Cargando…
A Multivariate Spatiotemporal Model of COVID-19 Epidemic Using Ensemble of ConvLSTM Networks
The high R-naught factor of SARS-CoV-2 has created a race against time for mankind, and it necessitates rapid containment actions to control the spread. In such scenario short-term accurate spatiotemporal predictions can help understanding the dynamics of the spread in a geographic region and identi...
Autores principales: | Paul, Swarna Kamal, Jana, Saikat, Bhaumik, Parama |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656228/ http://dx.doi.org/10.1007/s40031-020-00517-x |
Ejemplares similares
-
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification
por: Li, Li, et al.
Publicado: (2022) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023) -
Short-Term Demand Forecast of E-Commerce Platform Based on ConvLSTM Network
por: Li, Zan, et al.
Publicado: (2022)