Cargando…
A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces
The conventional approach to nanophotonic metasurface design and optimization for a targeted electromagnetic response involves exploring large geometry and material spaces. This is a highly iterative process based on trial and error, which is computationally costly and time consuming. Moreover, the...
Autores principales: | Mall, Abhishek, Patil, Abhijeet, Sethi, Amit, Kumar, Anshuman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656263/ https://www.ncbi.nlm.nih.gov/pubmed/33173073 http://dx.doi.org/10.1038/s41598-020-76400-y |
Ejemplares similares
-
Metasurface Freeform Nanophotonics
por: Zhan, Alan, et al.
Publicado: (2017) -
Fabrication-constrained nanophotonic inverse design
por: Piggott, Alexander Y., et al.
Publicado: (2017) -
Ultracompact Nanophotonics: Light Emission and Manipulation with Metasurfaces
por: Hong, Yu-Heng, et al.
Publicado: (2022) -
Machine Learning
in Interpolation and Extrapolation
for Nanophotonic Inverse Design
por: Acharige, Didulani, et al.
Publicado: (2022) -
Nanophotonic particle simulation and inverse design using artificial neural networks
por: Peurifoy, John, et al.
Publicado: (2018)