Cargando…
Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications
Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656291/ https://www.ncbi.nlm.nih.gov/pubmed/32835886 http://dx.doi.org/10.1016/j.molp.2020.08.009 |
_version_ | 1783608351700025344 |
---|---|
author | Wang, Jian You Jamil, Muhammad Lin, Pei-Yu Ota, Tsuyoshi Fiorilli, Valentina Novero, Mara Zarban, Randa A. Kountche, Boubacar A. Takahashi, Ikuo Martínez, Claudio Lanfranco, Luisa Bonfante, Paola de Lera, Angel R. Asami, Tadao Al-Babili, Salim |
author_facet | Wang, Jian You Jamil, Muhammad Lin, Pei-Yu Ota, Tsuyoshi Fiorilli, Valentina Novero, Mara Zarban, Randa A. Kountche, Boubacar A. Takahashi, Ikuo Martínez, Claudio Lanfranco, Luisa Bonfante, Paola de Lera, Angel R. Asami, Tadao Al-Babili, Salim |
author_sort | Wang, Jian You |
collection | PubMed |
description | Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization. In this study, we developed easy-to-synthesize and highly efficient mimics of zaxinone (MiZax). We performed a structure–activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features. Using the obtained results, we designed several phenyl-based compounds synthesized with a high-yield through a simple method. Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant, promoting growth, and reducing SL content in roots and root exudates of wild-type plants. Moreover, these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions, and did not negatively impact mycorrhization. Taken together, MiZax are a promising tool for elucidating zaxinone biology and investigating rice development, and suitable candidates for combating Striga and increasing crop growth. |
format | Online Article Text |
id | pubmed-7656291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76562912020-11-17 Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications Wang, Jian You Jamil, Muhammad Lin, Pei-Yu Ota, Tsuyoshi Fiorilli, Valentina Novero, Mara Zarban, Randa A. Kountche, Boubacar A. Takahashi, Ikuo Martínez, Claudio Lanfranco, Luisa Bonfante, Paola de Lera, Angel R. Asami, Tadao Al-Babili, Salim Mol Plant Research Report Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization. In this study, we developed easy-to-synthesize and highly efficient mimics of zaxinone (MiZax). We performed a structure–activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features. Using the obtained results, we designed several phenyl-based compounds synthesized with a high-yield through a simple method. Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant, promoting growth, and reducing SL content in roots and root exudates of wild-type plants. Moreover, these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions, and did not negatively impact mycorrhization. Taken together, MiZax are a promising tool for elucidating zaxinone biology and investigating rice development, and suitable candidates for combating Striga and increasing crop growth. Oxford University Press 2020-11-02 /pmc/articles/PMC7656291/ /pubmed/32835886 http://dx.doi.org/10.1016/j.molp.2020.08.009 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Report Wang, Jian You Jamil, Muhammad Lin, Pei-Yu Ota, Tsuyoshi Fiorilli, Valentina Novero, Mara Zarban, Randa A. Kountche, Boubacar A. Takahashi, Ikuo Martínez, Claudio Lanfranco, Luisa Bonfante, Paola de Lera, Angel R. Asami, Tadao Al-Babili, Salim Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title | Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title_full | Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title_fullStr | Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title_full_unstemmed | Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title_short | Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications |
title_sort | efficient mimics for elucidating zaxinone biology and promoting agricultural applications |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656291/ https://www.ncbi.nlm.nih.gov/pubmed/32835886 http://dx.doi.org/10.1016/j.molp.2020.08.009 |
work_keys_str_mv | AT wangjianyou efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT jamilmuhammad efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT linpeiyu efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT otatsuyoshi efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT fiorillivalentina efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT noveromara efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT zarbanrandaa efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT kountcheboubacara efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT takahashiikuo efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT martinezclaudio efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT lanfrancoluisa efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT bonfantepaola efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT deleraangelr efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT asamitadao efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications AT albabilisalim efficientmimicsforelucidatingzaxinonebiologyandpromotingagriculturalapplications |