Cargando…
G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program
Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltran...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656293/ https://www.ncbi.nlm.nih.gov/pubmed/33147463 http://dx.doi.org/10.1016/j.celrep.2020.108341 |
_version_ | 1783608352176078848 |
---|---|
author | Mabe, Nathaniel W. Garcia, Nina Marie G. Wolery, Shayna E. Newcomb, Rachel Meingasner, Ryan C. Vilona, Brittany A. Lupo, Ryan Lin, Chao-Chieh Chi, Jen-Tsan Alvarez, James V. |
author_facet | Mabe, Nathaniel W. Garcia, Nina Marie G. Wolery, Shayna E. Newcomb, Rachel Meingasner, Ryan C. Vilona, Brittany A. Lupo, Ryan Lin, Chao-Chieh Chi, Jen-Tsan Alvarez, James V. |
author_sort | Mabe, Nathaniel W. |
collection | PubMed |
description | Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer. |
format | Online Article Text |
id | pubmed-7656293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76562932020-11-11 G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program Mabe, Nathaniel W. Garcia, Nina Marie G. Wolery, Shayna E. Newcomb, Rachel Meingasner, Ryan C. Vilona, Brittany A. Lupo, Ryan Lin, Chao-Chieh Chi, Jen-Tsan Alvarez, James V. Cell Rep Article Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer. 2020-11-03 /pmc/articles/PMC7656293/ /pubmed/33147463 http://dx.doi.org/10.1016/j.celrep.2020.108341 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Mabe, Nathaniel W. Garcia, Nina Marie G. Wolery, Shayna E. Newcomb, Rachel Meingasner, Ryan C. Vilona, Brittany A. Lupo, Ryan Lin, Chao-Chieh Chi, Jen-Tsan Alvarez, James V. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title | G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title_full | G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title_fullStr | G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title_full_unstemmed | G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title_short | G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program |
title_sort | g9a promotes breast cancer recurrence through repression of a pro-inflammatory program |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656293/ https://www.ncbi.nlm.nih.gov/pubmed/33147463 http://dx.doi.org/10.1016/j.celrep.2020.108341 |
work_keys_str_mv | AT mabenathanielw g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT garcianinamarieg g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT woleryshaynae g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT newcombrachel g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT meingasnerryanc g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT vilonabrittanya g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT luporyan g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT linchaochieh g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT chijentsan g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram AT alvarezjamesv g9apromotesbreastcancerrecurrencethroughrepressionofaproinflammatoryprogram |