Cargando…

LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma

BACKGROUND: Oral squamous cell carcinoma (OSCC) at early stages can be misdiagnosed as an oral ulcer (OU) due to similar symptoms, such as chronic and indurated ulcer. LncRNA NCK1-AS1 has been characterized as a key player in cervical cancer, while its role in OSCC is unknown. METHODS: All participa...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Fei, Ou, Yangqian, Luo, Ping, Zhong, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656691/
https://www.ncbi.nlm.nih.gov/pubmed/33194849
http://dx.doi.org/10.1186/s40709-020-00126-1
Descripción
Sumario:BACKGROUND: Oral squamous cell carcinoma (OSCC) at early stages can be misdiagnosed as an oral ulcer (OU) due to similar symptoms, such as chronic and indurated ulcer. LncRNA NCK1-AS1 has been characterized as a key player in cervical cancer, while its role in OSCC is unknown. METHODS: All participants were selected at Jiangxi Province Tumor Hospital from December 2016 to December 2018. Expression levels of NCK1-AS1 and miR-100 in plasma from both OSCC and OU patients were measured by RT-qPCR. Diagnostic analysis was performed through ROC curve. Potential interactions between NCK1-AS1 and miR-100 were detected by cell transfection experiments. Cell invasion and migration were assessed by Transwell assays. RESULTS: The expression of NCK1-AS1 was upregulated in early-stage OSCC patients but not in OU patients. Upregulation of NCK1-AS1 distinguished OSCC patients from OU patients. The expression of miR-100 was inversely correlated with the expression of NCK1-AS1. Overexpression of NCK1-AS1 was followed by promoted OSCC cell invasion and migration. Overexpression of miR-100 did not affect the expression of NCK1-AS1 but inhibited the role of NCK1-AS1. CONCLUSIONS: Therefore, NCK1-AS1 may promote the metastasis of OSCC by downregulating miR-100.