Cargando…

The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking

Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-sili...

Descripción completa

Detalles Bibliográficos
Autores principales: Habashy, Noha H., Abu-Serie, Marwa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656998/
https://www.ncbi.nlm.nih.gov/pubmed/33199981
http://dx.doi.org/10.1016/j.jff.2020.104282
Descripción
Sumario:Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-silico analyses have been performed to predict the impact of these proteins on viral entry, replication, and complications. These proteins have shown a high potency in sialic acid hydrolysis from the lung cells (WI-38) surface. Docking analysis showed that these proteins have a high binding affinity to viral receptor-binding sites in the receptor-binding domain, causing attachment prevention. Moreover, MRJPs can exert an inhibitory influence, via different mechanisms, for SARS-CoV-2 non-structural proteins (main and papain proteases, RNA replicase, RNA-dependent RNA polymerase, and methyltransferase). Also, they can bind to hemoglobin-binding sites on viral-nsps and prevent their hemoglobin attack. Thus, MRJP2 and MRJP2 X1 can be a promising therapy for SARS-CoV-2 infection.