Cargando…
Factors influencing precision medicine knowledge and attitudes
Precision medicine holds great promise for improving health and reducing health disparities that can be most fully realized by advancing diversity and inclusion in research participants. Without engaging underrepresented groups, precision medicine could not only fail to achieve its promise but also...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657499/ https://www.ncbi.nlm.nih.gov/pubmed/33175834 http://dx.doi.org/10.1371/journal.pone.0234833 |
Sumario: | Precision medicine holds great promise for improving health and reducing health disparities that can be most fully realized by advancing diversity and inclusion in research participants. Without engaging underrepresented groups, precision medicine could not only fail to achieve its promise but also further exacerbate the health disparities already burdening the most vulnerable. Yet underrepresentation by people of non-European ancestry continues in precision medicine research and there are disparities across racial groups in the uptake of precision medicine applications and services. Studies have explored possible explanations for population differences in precision medicine participation, but full appreciation of the factors involved is still developing. To better inform the potential for addressing health disparities through PM, we assessed the relationship of precision medicine knowledge and trust in biomedical research with sociodemographic variables. Using a series of linear regression models applied to survey data collected in a diverse sample, we analyzed variation in both precision medicine knowledge and trust in biomedical research with socioeconomic factors as a way to understand the range of precision medicine knowledge (PMK) in a broadly representative group and its relationship to trust in research and demographic characteristics. Our results demonstrate that identifying as Black, while significantly PMK, explains only 1.5% of the PMK variance in unadjusted models and 7% of overall variance in models adjusted for meaningful covariates such as age, marital status, employment, and education. We also found a positive association between PMK and trust in biomedical research. These results indicate that race is a factor affecting PMK, even after accounting for differences in sociodemographic variables. Additional work is needed, however, to identify other factors contributing to variation in PMK as we work to increase diversity and inclusion in precision medicine applications. |
---|