Cargando…
Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys
Along the Florida reef tract, stony-coral-tissue-loss disease (SCTLD) has caused extensive mortality of more than 20 scleractinian coral species. The pathogen is unknown, but its epizoology indicates that the disease, facilitated by water currents, has progressed linearly along the tract, affecting...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657511/ https://www.ncbi.nlm.nih.gov/pubmed/33175886 http://dx.doi.org/10.1371/journal.pone.0241871 |
_version_ | 1783608517702189056 |
---|---|
author | Sharp, William C. Shea, Colin P. Maxwell, Kerry E. Muller, Erinn M. Hunt, John H. |
author_facet | Sharp, William C. Shea, Colin P. Maxwell, Kerry E. Muller, Erinn M. Hunt, John H. |
author_sort | Sharp, William C. |
collection | PubMed |
description | Along the Florida reef tract, stony-coral-tissue-loss disease (SCTLD) has caused extensive mortality of more than 20 scleractinian coral species. The pathogen is unknown, but its epizoology indicates that the disease, facilitated by water currents, has progressed linearly along the tract, affecting reefs at the scale of hundreds of kilometers. To inform ongoing disease mitigation efforts, we examined the small-scale spatial and temporal epidemiology of SCTLD. We established a series of sites in the middle Florida Keys at offshore and inshore locations that had not yet shown signs of SCTLD. We then conducted high-frequency monitoring from February 2018 through September 2019 and documented the onset of SCTLD and its progression through the sites. SCTLD was first observed at one site during early February 2018 and by early March 2018 all sites showed signs of the disease. A dynamic multistate model suggested that disease transmission was independent of coral density and found little evidence of a positive association between a colony showing signs of SCTLD and the condition or distance to its neighboring colonies. The model did, however, indicate that the probability of a colony showing signs of SCTLD increased with increasing colony surface area. These results are consistent with the water-borne transmission of a pathogen that progressed rapidly through the survey area. However, by the end of our survey the progression of SCTLD had slowed, particularly at inshore sites. Many affected colonies no longer exhibited progressive tissue mortality typical of the disease, suggesting the existence of differentially resilient colonies or coral communities, meriting their use for future coral rescue and propagation and disease research. These results are useful for refining ongoing SCTLD mitigation strategies, particularly by determining when disease rates are sufficiently low for direct intervention efforts designed to arrest disease progression on individual coral colonies will be most effective. |
format | Online Article Text |
id | pubmed-7657511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-76575112020-11-18 Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys Sharp, William C. Shea, Colin P. Maxwell, Kerry E. Muller, Erinn M. Hunt, John H. PLoS One Research Article Along the Florida reef tract, stony-coral-tissue-loss disease (SCTLD) has caused extensive mortality of more than 20 scleractinian coral species. The pathogen is unknown, but its epizoology indicates that the disease, facilitated by water currents, has progressed linearly along the tract, affecting reefs at the scale of hundreds of kilometers. To inform ongoing disease mitigation efforts, we examined the small-scale spatial and temporal epidemiology of SCTLD. We established a series of sites in the middle Florida Keys at offshore and inshore locations that had not yet shown signs of SCTLD. We then conducted high-frequency monitoring from February 2018 through September 2019 and documented the onset of SCTLD and its progression through the sites. SCTLD was first observed at one site during early February 2018 and by early March 2018 all sites showed signs of the disease. A dynamic multistate model suggested that disease transmission was independent of coral density and found little evidence of a positive association between a colony showing signs of SCTLD and the condition or distance to its neighboring colonies. The model did, however, indicate that the probability of a colony showing signs of SCTLD increased with increasing colony surface area. These results are consistent with the water-borne transmission of a pathogen that progressed rapidly through the survey area. However, by the end of our survey the progression of SCTLD had slowed, particularly at inshore sites. Many affected colonies no longer exhibited progressive tissue mortality typical of the disease, suggesting the existence of differentially resilient colonies or coral communities, meriting their use for future coral rescue and propagation and disease research. These results are useful for refining ongoing SCTLD mitigation strategies, particularly by determining when disease rates are sufficiently low for direct intervention efforts designed to arrest disease progression on individual coral colonies will be most effective. Public Library of Science 2020-11-11 /pmc/articles/PMC7657511/ /pubmed/33175886 http://dx.doi.org/10.1371/journal.pone.0241871 Text en © 2020 Sharp et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sharp, William C. Shea, Colin P. Maxwell, Kerry E. Muller, Erinn M. Hunt, John H. Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title | Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title_full | Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title_fullStr | Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title_full_unstemmed | Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title_short | Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys |
title_sort | evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle florida keys |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657511/ https://www.ncbi.nlm.nih.gov/pubmed/33175886 http://dx.doi.org/10.1371/journal.pone.0241871 |
work_keys_str_mv | AT sharpwilliamc evaluatingthesmallscaleepidemiologyofthestonycoraltissuelossdiseaseinthemiddlefloridakeys AT sheacolinp evaluatingthesmallscaleepidemiologyofthestonycoraltissuelossdiseaseinthemiddlefloridakeys AT maxwellkerrye evaluatingthesmallscaleepidemiologyofthestonycoraltissuelossdiseaseinthemiddlefloridakeys AT mullererinnm evaluatingthesmallscaleepidemiologyofthestonycoraltissuelossdiseaseinthemiddlefloridakeys AT huntjohnh evaluatingthesmallscaleepidemiologyofthestonycoraltissuelossdiseaseinthemiddlefloridakeys |