Cargando…
Developing a Process for the Analysis of User Journeys and the Prediction of Dropout in Digital Health Interventions: Machine Learning Approach
BACKGROUND: User dropout is a widespread concern in the delivery and evaluation of digital (ie, web and mobile apps) health interventions. Researchers have yet to fully realize the potential of the large amount of data generated by these technology-based programs. Of particular interest is the abili...
Autores principales: | Bremer, Vincent, Chow, Philip I, Funk, Burkhardt, Thorndike, Frances P, Ritterband, Lee M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657718/ https://www.ncbi.nlm.nih.gov/pubmed/33112241 http://dx.doi.org/10.2196/17738 |
Ejemplares similares
-
Internet Interventions or Patient Education Web sites?
por: Ritterband, Lee M, et al.
Publicado: (2006) -
Using Instructional Design Process to Improve Design and Development of Internet Interventions
por: Hilgart, Michelle M, et al.
Publicado: (2012) -
The Model of Gamification Principles for Digital Health Interventions: Evaluation of Validity and Potential Utility
por: Floryan, Mark, et al.
Publicado: (2020) -
A secondary analysis of the role of geography in engagement and outcomes in a clinical trial of an efficacious Internet intervention for insomnia()
por: Chow, Philip I., et al.
Publicado: (2019) -
Heterogeneity Matters: Predicting Self-Esteem in Online Interventions Based on Ecological Momentary Assessment Data
por: Bremer, Vincent, et al.
Publicado: (2019)