Cargando…
Efficient DNA sequence compression with neural networks
BACKGROUND: The increasing production of genomic data has led to an intensified need for models that can cope efficiently with the lossless compression of DNA sequences. Important applications include long-term storage and compression-based data analysis. In the literature, only a few recent article...
Autores principales: | Silva, Milton, Pratas, Diogo, Pinho, Armando J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657843/ https://www.ncbi.nlm.nih.gov/pubmed/33179040 http://dx.doi.org/10.1093/gigascience/giaa119 |
Ejemplares similares
-
AC2: An Efficient Protein Sequence Compression Tool Using Artificial Neural Networks and Cache-Hash Models
por: Silva, Milton, et al.
Publicado: (2021) -
Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements
por: Hosseini, Morteza, et al.
Publicado: (2020) -
XS: a FASTQ read simulator
por: Pratas, Diogo, et al.
Publicado: (2014) -
MFCompress: a compression tool for FASTA and multi-FASTA data
por: Pinho, Armando J., et al.
Publicado: (2014) -
Three minimal sequences found in Ebola virus genomes and absent from human DNA
por: Silva, Raquel M., et al.
Publicado: (2015)