Cargando…

Adaptation of the carbamoyl-phosphate synthetase enzyme in an extremophile fish

Tetrapods and fish have adapted distinct carbamoyl-phosphate synthase (CPS) enzymes to initiate the ornithine urea cycle during the detoxification of nitrogenous wastes. We report evidence that in the ureotelic subgenus of extremophile fish Oreochromis Alcolapia, CPS III has undergone convergent evo...

Descripción completa

Detalles Bibliográficos
Autores principales: White, Lewis J., Sutton, Gemma, Shechonge, Asilatu, Day, Julia J., Dasmahapatra, Kanchon K., Pownall, Mary E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657897/
https://www.ncbi.nlm.nih.gov/pubmed/33204476
http://dx.doi.org/10.1098/rsos.201200
Descripción
Sumario:Tetrapods and fish have adapted distinct carbamoyl-phosphate synthase (CPS) enzymes to initiate the ornithine urea cycle during the detoxification of nitrogenous wastes. We report evidence that in the ureotelic subgenus of extremophile fish Oreochromis Alcolapia, CPS III has undergone convergent evolution and adapted its substrate affinity to ammonia, which is typical of terrestrial vertebrate CPS I. Unusually, unlike in other vertebrates, the expression of CPS III in Alcolapia is localized to the skeletal muscle and is activated in the myogenic lineage during early embryonic development with expression remaining in mature fish. We propose that adaptation in Alcolapia included both convergent evolution of CPS function to that of terrestrial vertebrates, as well as changes in development mechanisms redirecting CPS III gene expression to the skeletal muscle.