Cargando…

Bayesian inference for diffusion processes: using higher-order approximations for transition densities

Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically appr...

Descripción completa

Detalles Bibliográficos
Autores principales: Pieschner, Susanne, Fuchs, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657901/
https://www.ncbi.nlm.nih.gov/pubmed/33204444
http://dx.doi.org/10.1098/rsos.200270

Ejemplares similares