Cargando…
Bayesian inference for diffusion processes: using higher-order approximations for transition densities
Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically appr...
Autores principales: | Pieschner, Susanne, Fuchs, Christiane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657901/ https://www.ncbi.nlm.nih.gov/pubmed/33204444 http://dx.doi.org/10.1098/rsos.200270 |
Ejemplares similares
-
Higher-order probabilistic perceptrons as bayesian inference engines
por: Clark, J W, et al.
Publicado: (1999) -
Inference for diffusion processes: with applications in life sciences
por: Fuchs, Christiane
Publicado: (2013) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Ordered cones and approximation
por: Keimel, Klaus, et al.
Publicado: (1992) -
Handbook of approximate Bayesian computation
por: Sisson, Scott A, et al.
Publicado: (2018)