Cargando…

An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs

We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m(−2)). These measurements were originally taken as part o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kibble, Milla, Khan, Suleiman A., Ammad-ud-din, Muhammad, Bollepalli, Sailalitha, Palviainen, Teemu, Kaprio, Jaakko, Pietiläinen, Kirsi H., Ollikainen, Miina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657920/
https://www.ncbi.nlm.nih.gov/pubmed/33204460
http://dx.doi.org/10.1098/rsos.200872
_version_ 1783608572191440896
author Kibble, Milla
Khan, Suleiman A.
Ammad-ud-din, Muhammad
Bollepalli, Sailalitha
Palviainen, Teemu
Kaprio, Jaakko
Pietiläinen, Kirsi H.
Ollikainen, Miina
author_facet Kibble, Milla
Khan, Suleiman A.
Ammad-ud-din, Muhammad
Bollepalli, Sailalitha
Palviainen, Teemu
Kaprio, Jaakko
Pietiläinen, Kirsi H.
Ollikainen, Miina
author_sort Kibble, Milla
collection PubMed
description We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m(−2)). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA.
format Online
Article
Text
id pubmed-7657920
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-76579202020-11-16 An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs Kibble, Milla Khan, Suleiman A. Ammad-ud-din, Muhammad Bollepalli, Sailalitha Palviainen, Teemu Kaprio, Jaakko Pietiläinen, Kirsi H. Ollikainen, Miina R Soc Open Sci Genetics and Genomics We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m(−2)). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA. The Royal Society 2020-10-21 /pmc/articles/PMC7657920/ /pubmed/33204460 http://dx.doi.org/10.1098/rsos.200872 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Genetics and Genomics
Kibble, Milla
Khan, Suleiman A.
Ammad-ud-din, Muhammad
Bollepalli, Sailalitha
Palviainen, Teemu
Kaprio, Jaakko
Pietiläinen, Kirsi H.
Ollikainen, Miina
An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_full An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_fullStr An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_full_unstemmed An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_short An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_sort integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
topic Genetics and Genomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657920/
https://www.ncbi.nlm.nih.gov/pubmed/33204460
http://dx.doi.org/10.1098/rsos.200872
work_keys_str_mv AT kibblemilla anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT khansuleimana anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT ammaduddinmuhammad anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT bollepallisailalitha anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT palviainenteemu anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT kapriojaakko anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT pietilainenkirsih anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT ollikainenmiina anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT kibblemilla integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT khansuleimana integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT ammaduddinmuhammad integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT bollepallisailalitha integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT palviainenteemu integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT kapriojaakko integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT pietilainenkirsih integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT ollikainenmiina integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs