Cargando…

A high-resolution map of reactive nitrogen inputs to China

To feed an increasingly affluent population, reactive nitrogen (Nr) inputs to China’s lands and waters have substantially increased over the past century. Today, China’s Nr emissions account for over one third of global total emissions, leading to serious environmental pollution and health damages....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sitong, Zhang, Xiuming, Wang, Chen, Zhang, Xiuying, Reis, Stefan, Xu, Jianming, Gu, Baojing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658216/
https://www.ncbi.nlm.nih.gov/pubmed/33177531
http://dx.doi.org/10.1038/s41597-020-00718-5
Descripción
Sumario:To feed an increasingly affluent population, reactive nitrogen (Nr) inputs to China’s lands and waters have substantially increased over the past century. Today, China’s Nr emissions account for over one third of global total emissions, leading to serious environmental pollution and health damages. Quantifying the spatial variability of Nr inputs is crucial for the identification of intervention points to mitigate Nr pollution, which, however, is not well known. Here, we present a database describing Nr inputs to China for the year 2017 with a 1 km × 1 km resolution, considering land use and Nr sources, compiled by using the CHANS model. Results show that the North China Plain, the Sichuan Basin and the Middle-Lower Yangtze River Plain are hotspots of Nr inputs, where per hectare Nr input is an order of magnitude higher than that in other regions. Cropland and surface water bodies receive much higher Nr inputs than other land use types. This unique database will provide basic data for research on environmental health and global change modelling.