Cargando…
Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience
We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rheg...
Autores principales: | Antaki, Fares, Kahwati, Ghofril, Sebag, Julia, Coussa, Razek Georges, Fanous, Anthony, Duval, Renaud, Sebag, Mikael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658348/ https://www.ncbi.nlm.nih.gov/pubmed/33177614 http://dx.doi.org/10.1038/s41598-020-76665-3 |
Ejemplares similares
-
HLA-A29 negative Birdshot-like chorioretinopathy associated with common variable immunodeficiency
por: Coussa, Razek Georges, et al.
Publicado: (2018) -
Development of a code-free machine learning model for the classification of cataract surgery phases
por: Touma, Samir, et al.
Publicado: (2022) -
Prognostic factors of postoperative intraretinal cystoid spaces after primary pars plana vitrectomy for vitreomacular traction
por: Coussa, Razek Georges, et al.
Publicado: (2019) -
Proliferative Vitreoretinopathy and Genetic Profile
por: Ghasemi Falavarjani, Khalil
Publicado: (2013) -
Proliferative Vitreoretinopathy: A Reappraisal
por: Carpineto, Paolo, et al.
Publicado: (2023)