Cargando…
Raman spectra‐based deep learning: A tool to identify microbial contamination
Deep learning has the potential to enhance the output of in‐line, on‐line, and at‐line instrumentation used for process analytical technology in the pharmaceutical industry. Here, we used Raman spectroscopy‐based deep learning strategies to develop a tool for detecting microbial contamination. We bu...
Autores principales: | Maruthamuthu, Murali K., Raffiee, Amir Hossein, De Oliveira, Denilson Mendes, Ardekani, Arezoo M., Verma, Mohit S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658449/ https://www.ncbi.nlm.nih.gov/pubmed/33063423 http://dx.doi.org/10.1002/mbo3.1122 |
Ejemplares similares
-
Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies
por: Maruthamuthu, Murali K., et al.
Publicado: (2020) -
Towards smart self-clearing glaucoma drainage device
por: Park, Hyunsu, et al.
Publicado: (2018) -
Characterizing viral samples using machine learning for Raman and absorption spectroscopy
por: Boodaghidizaji, Miad, et al.
Publicado: (2022) -
Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra
por: Manganelli Conforti, Pietro, et al.
Publicado: (2022) -
A Deep Learning Approach for Detecting Colorectal Cancer via Raman Spectra
por: Cao, Zheng, et al.
Publicado: (2022)