Cargando…

Bacterial‐like nitric oxide synthase in the haloalkaliphilic archaeon Natronomonas pharaonis

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well‐characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archae...

Descripción completa

Detalles Bibliográficos
Autores principales: Orsini, Silvia S., James, Kimberly L., Reyes, Destiny J., Couto‐Rodriguez, Ricardo L., Gulko, Miriam K., Witte, Angela, Carroll, Ronan K., Rice, Kelly C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658456/
https://www.ncbi.nlm.nih.gov/pubmed/33306280
http://dx.doi.org/10.1002/mbo3.1124
Descripción
Sumario:Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well‐characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His‐tagged npNOS by coupling nitrite production from N‐hydroxy‐L‐arginine in an H(2)O(2)‐supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re‐sequencing of this mutant revealed an additional frameshift in a putative cation–acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.