Cargando…
Surface decoration of development-inspired synthetic N-cadherin motif via Ac-BP promotes osseointegration of metal implants
Research works on the synergistic effect of surface modified bioactive molecules and bone metal implants have been highlighted. N-cadherin is regarded as a key factor in directing cell–cell interactions during the mesenchymal condensation preceding the osteogenesis in the musculoskeletal system. In...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658495/ https://www.ncbi.nlm.nih.gov/pubmed/33210028 http://dx.doi.org/10.1016/j.bioactmat.2020.11.002 |
Sumario: | Research works on the synergistic effect of surface modified bioactive molecules and bone metal implants have been highlighted. N-cadherin is regarded as a key factor in directing cell–cell interactions during the mesenchymal condensation preceding the osteogenesis in the musculoskeletal system. In this study, the N-cadherin mimetic peptide (Cad) was biofunctionalized on the titanium metal surface via the acryloyl bisphosphonate (Ac-BP). To learn the synergistic effect of N-cadherin mimetic peptide, when tethered with titanium substrates, on promoting osteogenic differentiation of the seeded human mesenchymal stem cells (hMSCs) and the osseointegration at the bone-implant interfaces. Results show that the conjugation of N-cadherin mimetic peptide with Ac-BP promoted the osteogenic gene markers expression in the hMSCs. The biofunctionalized biomaterial surfaces promote the expression of the Wnt/β-catenin downstream axis in the attached hMSCs, and then enhance the in-situ bone formation and osseointegration at the bone-implant interfaces. We conclude that this N-cadherin mimetic peptide tethered on Ti surface promote osteogenic differentiation of hMSCs and osseointegration of biomaterial implants in vitro and in vivo. These findings demonstrate the importance of the development-inspired surface bioactivation of metal implants and shed light on the possible cellular mechanisms of the enhanced osseointegration. |
---|