Cargando…
Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values
BACKGROUND: Sepsis is a heterogenous syndrome and individualized management strategy is the key to successful treatment. Genome wide expression profiling has been utilized for identifying subclasses of sepsis, but the clinical utility of these subclasses was limited because of the classification ins...
Autores principales: | Zhang, Zhongheng, Pan, Qing, Ge, Huiqing, Xing, Lifeng, Hong, Yucai, Chen, Pengpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658497/ https://www.ncbi.nlm.nih.gov/pubmed/33181462 http://dx.doi.org/10.1016/j.ebiom.2020.103081 |
Ejemplares similares
-
Gene correlation network analysis to identify regulatory factors in sepsis
por: Zhang, Zhongheng, et al.
Publicado: (2020) -
Single-cell transcriptome profiling reveals heterogeneous neutrophils with prognostic values in sepsis
por: Hong, Yucai, et al.
Publicado: (2022) -
Individualized Mechanical power-based ventilation strategy for acute respiratory failure formalized by finite mixture modeling and dynamic treatment regimen
por: Hong, Yucai, et al.
Publicado: (2021) -
The landscape of isoform switches in sepsis: a multicenter cohort study
por: Chen, Lin, et al.
Publicado: (2022) -
Identifying Novel Clusters of Patients With Prolonged Mechanical Ventilation Using Trajectories of Rapid Shallow Breathing Index
por: Yang, Tsung-Ming, et al.
Publicado: (2022)