Cargando…

FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells

RNA interference (RNAi) is mediated by an ∼21-nt double-stranded small interfering RNA (siRNA) and shows great promise in delineating gene functions and in developing therapeutics for human diseases. However, effective gene silencing usually requires the delivery of multiple siRNAs for a given gene,...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Fang, Ni, Na, Zeng, Zongyue, Wu, Di, Feng, Yixiao, Li, Alexander J., Luu, Benjamin, Li, Alissa F., Qin, Kevin, Wang, Eric, Wang, Xi, Wu, Xiaoxing, Luo, Huaxiu, Zhang, Jing, Zhang, Meng, Mao, Yukun, Pakvasa, Mikhail, Wagstaff, William, Zhang, Yongtao, Niu, Changchun, Wang, Hao, Huang, Linjuan, Shi, Deyao, Liu, Qing, Zhao, Xia, Fu, Kai, Reid, Russell R., Wolf, Jennifer Moriatis, Lee, Michael J., Hynes, Kelly, Strelzow, Jason, El Dafrawy, Mostafa, Gan, Hua, He, Tong-Chuan, Fan, Jiaming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658575/
https://www.ncbi.nlm.nih.gov/pubmed/33230483
http://dx.doi.org/10.1016/j.omtn.2020.10.007
_version_ 1783608702133075968
author He, Fang
Ni, Na
Zeng, Zongyue
Wu, Di
Feng, Yixiao
Li, Alexander J.
Luu, Benjamin
Li, Alissa F.
Qin, Kevin
Wang, Eric
Wang, Xi
Wu, Xiaoxing
Luo, Huaxiu
Zhang, Jing
Zhang, Meng
Mao, Yukun
Pakvasa, Mikhail
Wagstaff, William
Zhang, Yongtao
Niu, Changchun
Wang, Hao
Huang, Linjuan
Shi, Deyao
Liu, Qing
Zhao, Xia
Fu, Kai
Reid, Russell R.
Wolf, Jennifer Moriatis
Lee, Michael J.
Hynes, Kelly
Strelzow, Jason
El Dafrawy, Mostafa
Gan, Hua
He, Tong-Chuan
Fan, Jiaming
author_facet He, Fang
Ni, Na
Zeng, Zongyue
Wu, Di
Feng, Yixiao
Li, Alexander J.
Luu, Benjamin
Li, Alissa F.
Qin, Kevin
Wang, Eric
Wang, Xi
Wu, Xiaoxing
Luo, Huaxiu
Zhang, Jing
Zhang, Meng
Mao, Yukun
Pakvasa, Mikhail
Wagstaff, William
Zhang, Yongtao
Niu, Changchun
Wang, Hao
Huang, Linjuan
Shi, Deyao
Liu, Qing
Zhao, Xia
Fu, Kai
Reid, Russell R.
Wolf, Jennifer Moriatis
Lee, Michael J.
Hynes, Kelly
Strelzow, Jason
El Dafrawy, Mostafa
Gan, Hua
He, Tong-Chuan
Fan, Jiaming
author_sort He, Fang
collection PubMed
description RNA interference (RNAi) is mediated by an ∼21-nt double-stranded small interfering RNA (siRNA) and shows great promise in delineating gene functions and in developing therapeutics for human diseases. However, effective gene silencing usually requires the delivery of multiple siRNAs for a given gene, which is often technically challenging and time-consuming. In this study, by exploiting the type IIS restriction endonuclease-based synthetic biology methodology, we developed the fast assembly of multiplex siRNAs (FAMSi) system. In our proof-of-concept experiments, we demonstrated that multiple fragments containing three, four, or five siRNA sites targeting common Smad4 and/or BMPR-specific Smad1, Smad5, and Smad8 required for BMP9 signaling could be assembled efficiently. The constructed multiplex siRNAs effectively knocked down the expression of Smad4 and/or Smad1, Smad5, and Smad8 in mesenchymal stem cells (MSCs), and they inhibited all aspects of BMP9-induced osteogenic differentiation in bone marrow MSCs (BMSCs), including decreased expression of osteogenic regulators/markers, reduced osteogenic marker alkaline phosphatase (ALP) activity, and diminished in vitro matrix mineralization and in vivo ectopic bone formation. Collectively, we demonstrate that the engineered FAMSi system provides a fast-track platform for assembling multiplexed siRNAs in a single vector, and thus it may be a valuable tool to study gene functions or to develop novel siRNA-based therapeutics.
format Online
Article
Text
id pubmed-7658575
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-76585752020-11-17 FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells He, Fang Ni, Na Zeng, Zongyue Wu, Di Feng, Yixiao Li, Alexander J. Luu, Benjamin Li, Alissa F. Qin, Kevin Wang, Eric Wang, Xi Wu, Xiaoxing Luo, Huaxiu Zhang, Jing Zhang, Meng Mao, Yukun Pakvasa, Mikhail Wagstaff, William Zhang, Yongtao Niu, Changchun Wang, Hao Huang, Linjuan Shi, Deyao Liu, Qing Zhao, Xia Fu, Kai Reid, Russell R. Wolf, Jennifer Moriatis Lee, Michael J. Hynes, Kelly Strelzow, Jason El Dafrawy, Mostafa Gan, Hua He, Tong-Chuan Fan, Jiaming Mol Ther Nucleic Acids Original Article RNA interference (RNAi) is mediated by an ∼21-nt double-stranded small interfering RNA (siRNA) and shows great promise in delineating gene functions and in developing therapeutics for human diseases. However, effective gene silencing usually requires the delivery of multiple siRNAs for a given gene, which is often technically challenging and time-consuming. In this study, by exploiting the type IIS restriction endonuclease-based synthetic biology methodology, we developed the fast assembly of multiplex siRNAs (FAMSi) system. In our proof-of-concept experiments, we demonstrated that multiple fragments containing three, four, or five siRNA sites targeting common Smad4 and/or BMPR-specific Smad1, Smad5, and Smad8 required for BMP9 signaling could be assembled efficiently. The constructed multiplex siRNAs effectively knocked down the expression of Smad4 and/or Smad1, Smad5, and Smad8 in mesenchymal stem cells (MSCs), and they inhibited all aspects of BMP9-induced osteogenic differentiation in bone marrow MSCs (BMSCs), including decreased expression of osteogenic regulators/markers, reduced osteogenic marker alkaline phosphatase (ALP) activity, and diminished in vitro matrix mineralization and in vivo ectopic bone formation. Collectively, we demonstrate that the engineered FAMSi system provides a fast-track platform for assembling multiplexed siRNAs in a single vector, and thus it may be a valuable tool to study gene functions or to develop novel siRNA-based therapeutics. American Society of Gene & Cell Therapy 2020-10-14 /pmc/articles/PMC7658575/ /pubmed/33230483 http://dx.doi.org/10.1016/j.omtn.2020.10.007 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
He, Fang
Ni, Na
Zeng, Zongyue
Wu, Di
Feng, Yixiao
Li, Alexander J.
Luu, Benjamin
Li, Alissa F.
Qin, Kevin
Wang, Eric
Wang, Xi
Wu, Xiaoxing
Luo, Huaxiu
Zhang, Jing
Zhang, Meng
Mao, Yukun
Pakvasa, Mikhail
Wagstaff, William
Zhang, Yongtao
Niu, Changchun
Wang, Hao
Huang, Linjuan
Shi, Deyao
Liu, Qing
Zhao, Xia
Fu, Kai
Reid, Russell R.
Wolf, Jennifer Moriatis
Lee, Michael J.
Hynes, Kelly
Strelzow, Jason
El Dafrawy, Mostafa
Gan, Hua
He, Tong-Chuan
Fan, Jiaming
FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title_full FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title_fullStr FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title_full_unstemmed FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title_short FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells
title_sort famsi: a synthetic biology approach to the fast assembly of multiplex sirnas for silencing gene expression in mammalian cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658575/
https://www.ncbi.nlm.nih.gov/pubmed/33230483
http://dx.doi.org/10.1016/j.omtn.2020.10.007
work_keys_str_mv AT hefang famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT nina famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT zengzongyue famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wudi famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT fengyixiao famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT lialexanderj famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT luubenjamin famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT lialissaf famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT qinkevin famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wangeric famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wangxi famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wuxiaoxing famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT luohuaxiu famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT zhangjing famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT zhangmeng famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT maoyukun famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT pakvasamikhail famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wagstaffwilliam famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT zhangyongtao famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT niuchangchun famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wanghao famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT huanglinjuan famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT shideyao famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT liuqing famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT zhaoxia famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT fukai famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT reidrussellr famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT wolfjennifermoriatis famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT leemichaelj famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT hyneskelly famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT strelzowjason famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT eldafrawymostafa famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT ganhua famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT hetongchuan famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells
AT fanjiaming famsiasyntheticbiologyapproachtothefastassemblyofmultiplexsirnasforsilencinggeneexpressioninmammaliancells