Cargando…
Lipidated Short Analogue of α-Melanocyte Stimulating Hormone Exerts Bactericidal Activity against the Stationary Phase of Methicillin-Resistant Staphylococcus aureus and Inhibits Biofilm Formation
[Image: see text] Stationary phase Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has been widely associated with many persistent infections as well as biofilm-associated infections, which are challenging due to their increasing antibiotic resistance. α-Melanocyte stimulat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658953/ https://www.ncbi.nlm.nih.gov/pubmed/33195893 http://dx.doi.org/10.1021/acsomega.0c01462 |
Sumario: | [Image: see text] Stationary phase Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has been widely associated with many persistent infections as well as biofilm-associated infections, which are challenging due to their increasing antibiotic resistance. α-Melanocyte stimulating hormone (α-MSH) is an antimicrobial peptide (AMP) with well-established potent activity against S. aureus, but little is known about its antimicrobial efficacy against the stationary phase of the bacteria. We investigated the in vitro activities of two palmitoylated analogues, Pal-α-MSH(6-13) and Pal-α-MSH(11-13), of the C-terminal fragments of α-MSH against biofilm-producing strains of methicillin-sensitive S. aureus (MSSA) and MRSA. While both the peptides demonstrated anti-staphylococcal efficacy, Pal-α-MSH(11-13) emerged as the most effective AMP as palmitoylation led to a remarkable enhancement in its activity against stationary phase bacteria. Similar to α-MSH, both the designed analogues were membrane-active and exhibited improved bacterial membrane depolarization and permeabilization, as further confirmed via electron microscopy studies. Of the two peptides, Pal-α-MSH(11-13) was able to retain its activity in the presence of standard microbiological media, which otherwise is a major limiting factor toward the therapeutic use of α-MSH-based peptides. More importantly, Pal-α-MSH(11-13) was also highly effective in inhibiting the formation of biofilms. Furthermore, it did not lead to resistance development in MRSA cells even upon 18 serial passages at sub-MIC concentrations. These observations support the potential use of Pal-α-MSH(11-13) in the treatment of planktonic as well as sessile S. aureus infections. |
---|