Cargando…

Water-Gated Proton Transfer Dynamics in Respiratory Complex I

[Image: see text] The respiratory complex I transduces redox energy into an electrochemical proton gradient in aerobic respiratory chains, powering energy-requiring processes in the cell. However, despite recently resolved molecular structures, the mechanism of this gigantic enzyme remains poorly un...

Descripción completa

Detalles Bibliográficos
Autores principales: Mühlbauer, Max E., Saura, Patricia, Nuber, Franziska, Di Luca, Andrea, Friedrich, Thorsten, Kaila, Ville R. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659035/
https://www.ncbi.nlm.nih.gov/pubmed/32643371
http://dx.doi.org/10.1021/jacs.0c02789
_version_ 1783608775513473024
author Mühlbauer, Max E.
Saura, Patricia
Nuber, Franziska
Di Luca, Andrea
Friedrich, Thorsten
Kaila, Ville R. I.
author_facet Mühlbauer, Max E.
Saura, Patricia
Nuber, Franziska
Di Luca, Andrea
Friedrich, Thorsten
Kaila, Ville R. I.
author_sort Mühlbauer, Max E.
collection PubMed
description [Image: see text] The respiratory complex I transduces redox energy into an electrochemical proton gradient in aerobic respiratory chains, powering energy-requiring processes in the cell. However, despite recently resolved molecular structures, the mechanism of this gigantic enzyme remains poorly understood. By combining large-scale quantum and classical simulations with site-directed mutagenesis and biophysical experiments, we show here how the conformational state of buried ion-pairs and water molecules control the protonation dynamics in the membrane domain of complex I and establish evolutionary conserved long-range coupling elements. We suggest that an electrostatic wave propagates in forward and reverse directions across the 200 Å long membrane domain during enzyme turnover, without significant dissipation of energy. Our findings demonstrate molecular principles that enable efficient long-range proton–electron coupling (PCET) and how perturbation of this PCET machinery may lead to development of mitochondrial disease.
format Online
Article
Text
id pubmed-7659035
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-76590352020-11-13 Water-Gated Proton Transfer Dynamics in Respiratory Complex I Mühlbauer, Max E. Saura, Patricia Nuber, Franziska Di Luca, Andrea Friedrich, Thorsten Kaila, Ville R. I. J Am Chem Soc [Image: see text] The respiratory complex I transduces redox energy into an electrochemical proton gradient in aerobic respiratory chains, powering energy-requiring processes in the cell. However, despite recently resolved molecular structures, the mechanism of this gigantic enzyme remains poorly understood. By combining large-scale quantum and classical simulations with site-directed mutagenesis and biophysical experiments, we show here how the conformational state of buried ion-pairs and water molecules control the protonation dynamics in the membrane domain of complex I and establish evolutionary conserved long-range coupling elements. We suggest that an electrostatic wave propagates in forward and reverse directions across the 200 Å long membrane domain during enzyme turnover, without significant dissipation of energy. Our findings demonstrate molecular principles that enable efficient long-range proton–electron coupling (PCET) and how perturbation of this PCET machinery may lead to development of mitochondrial disease. American Chemical Society 2020-07-09 2020-08-12 /pmc/articles/PMC7659035/ /pubmed/32643371 http://dx.doi.org/10.1021/jacs.0c02789 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Mühlbauer, Max E.
Saura, Patricia
Nuber, Franziska
Di Luca, Andrea
Friedrich, Thorsten
Kaila, Ville R. I.
Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title_full Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title_fullStr Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title_full_unstemmed Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title_short Water-Gated Proton Transfer Dynamics in Respiratory Complex I
title_sort water-gated proton transfer dynamics in respiratory complex i
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659035/
https://www.ncbi.nlm.nih.gov/pubmed/32643371
http://dx.doi.org/10.1021/jacs.0c02789
work_keys_str_mv AT muhlbauermaxe watergatedprotontransferdynamicsinrespiratorycomplexi
AT saurapatricia watergatedprotontransferdynamicsinrespiratorycomplexi
AT nuberfranziska watergatedprotontransferdynamicsinrespiratorycomplexi
AT dilucaandrea watergatedprotontransferdynamicsinrespiratorycomplexi
AT friedrichthorsten watergatedprotontransferdynamicsinrespiratorycomplexi
AT kailavilleri watergatedprotontransferdynamicsinrespiratorycomplexi