Cargando…

Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems

[Image: see text] Assuming that the interaction between particles is given by the Kern–Frenkel potential, Monte Carlo simulations are performed to study the clusters and structures formed by one-patch particles in a thin space between two parallel walls. In isothermal–isochoric systems with a short...

Descripción completa

Detalles Bibliográficos
Autor principal: Sato, Masahide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659161/
https://www.ncbi.nlm.nih.gov/pubmed/33195934
http://dx.doi.org/10.1021/acsomega.0c04159
_version_ 1783608805179785216
author Sato, Masahide
author_facet Sato, Masahide
author_sort Sato, Masahide
collection PubMed
description [Image: see text] Assuming that the interaction between particles is given by the Kern–Frenkel potential, Monte Carlo simulations are performed to study the clusters and structures formed by one-patch particles in a thin space between two parallel walls. In isothermal–isochoric systems with a short interaction length, tetrahedral tetramers, octahedral hexamers, and pentagonal dipyramidal heptamers are created with increasing patch area. In isothermal–isobaric systems, the double layers of a triangular lattice, which is the (111) face of the face-centered cubic (fcc) lattice, form when the pressure is high. For a long interaction length, a different type of cluster, trigonal prismatic hexamers, is created. The structures in the double layers also changed as follows: a simple hexagonal lattice or square lattice, which is the (100) face of the fcc structure, is created in isothermal–isobaric systems.
format Online
Article
Text
id pubmed-7659161
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-76591612020-11-13 Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems Sato, Masahide ACS Omega [Image: see text] Assuming that the interaction between particles is given by the Kern–Frenkel potential, Monte Carlo simulations are performed to study the clusters and structures formed by one-patch particles in a thin space between two parallel walls. In isothermal–isochoric systems with a short interaction length, tetrahedral tetramers, octahedral hexamers, and pentagonal dipyramidal heptamers are created with increasing patch area. In isothermal–isobaric systems, the double layers of a triangular lattice, which is the (111) face of the face-centered cubic (fcc) lattice, form when the pressure is high. For a long interaction length, a different type of cluster, trigonal prismatic hexamers, is created. The structures in the double layers also changed as follows: a simple hexagonal lattice or square lattice, which is the (100) face of the fcc structure, is created in isothermal–isobaric systems. American Chemical Society 2020-10-30 /pmc/articles/PMC7659161/ /pubmed/33195934 http://dx.doi.org/10.1021/acsomega.0c04159 Text en © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Sato, Masahide
Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title_full Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title_fullStr Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title_full_unstemmed Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title_short Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems
title_sort effect of patch area and interaction length on clusters and structures formed by one-patch particles in thin systems
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659161/
https://www.ncbi.nlm.nih.gov/pubmed/33195934
http://dx.doi.org/10.1021/acsomega.0c04159
work_keys_str_mv AT satomasahide effectofpatchareaandinteractionlengthonclustersandstructuresformedbyonepatchparticlesinthinsystems