Cargando…

Time of flight dual photon emission computed tomography

Time-of-flight dual photon emission computed tomography (TOF-DuPECT) is an imaging system that can obtain radionuclide distributions using time information recorded from two cascade-decay photons. The potential decay locations in the image space, a hyperbolic response curve, can be determined via ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiang, Chih-Chieh, Chuang, Chun-Chao, Ni, Yu-Ching, Jan, Meei-Ling, Chuang, Keh-Shih, Lin, Hsin-Hon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659351/
https://www.ncbi.nlm.nih.gov/pubmed/33177616
http://dx.doi.org/10.1038/s41598-020-76526-z
Descripción
Sumario:Time-of-flight dual photon emission computed tomography (TOF-DuPECT) is an imaging system that can obtain radionuclide distributions using time information recorded from two cascade-decay photons. The potential decay locations in the image space, a hyperbolic response curve, can be determined via time-difference-of-arrival (TDOA) estimations from two instantaneous coincidence photons. In this feasibility study, Monte Carlo simulations were performed to generate list-mode coincidence data. A full-ring positron emission tomography-like detection system geometry was built in the simulation environment. A contrast phantom and a Jaszczak-like phantom filled with Selenium-75 (Se-75) were used to evaluate the image quality. A TOF-DuPECT system with varying coincidence time resolution (CTR) was then evaluated. We used the stochastic origin ensemble (SOE) algorithm to reconstruct images from the recorded list-mode data. The results indicate that the SOE method can be successfully employed for the TOF-DuPECT system and can achieve acceptable image quality when the CTR is less than 100 ps. Therefore, the TOF-DuPECT imaging system is feasible. With the improvement of the detector with time, future implementations and applications of TOF-DuPECT are promising. Further quantitative imaging techniques such as attenuation and scatter corrections for the TOF-DuPECT system will be developed in future.