Cargando…

Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning

Peripheral blood mononuclear cells (PBMCs) bear specific dysregulations in genes and pathways at distinct stages of multiple sclerosis (MS) that may help with classifying MS and non-MS subjects, specifying the early stage of disease, or discriminating among MS courses. Here we describe an unbiased m...

Descripción completa

Detalles Bibliográficos
Autores principales: Acquaviva, Massimo, Menon, Ramesh, Di Dario, Marco, Dalla Costa, Gloria, Romeo, Marzia, Sangalli, Francesca, Colombo, Bruno, Moiola, Lucia, Martinelli, Vittorio, Comi, Giancarlo, Farina, Cinthia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659538/
https://www.ncbi.nlm.nih.gov/pubmed/33205062
http://dx.doi.org/10.1016/j.xcrm.2020.100053
_version_ 1783608842233315328
author Acquaviva, Massimo
Menon, Ramesh
Di Dario, Marco
Dalla Costa, Gloria
Romeo, Marzia
Sangalli, Francesca
Colombo, Bruno
Moiola, Lucia
Martinelli, Vittorio
Comi, Giancarlo
Farina, Cinthia
author_facet Acquaviva, Massimo
Menon, Ramesh
Di Dario, Marco
Dalla Costa, Gloria
Romeo, Marzia
Sangalli, Francesca
Colombo, Bruno
Moiola, Lucia
Martinelli, Vittorio
Comi, Giancarlo
Farina, Cinthia
author_sort Acquaviva, Massimo
collection PubMed
description Peripheral blood mononuclear cells (PBMCs) bear specific dysregulations in genes and pathways at distinct stages of multiple sclerosis (MS) that may help with classifying MS and non-MS subjects, specifying the early stage of disease, or discriminating among MS courses. Here we describe an unbiased machine learning workflow to build MS stage-specific classifiers based on PBMC transcriptomics profiles from more than 300 individuals, including healthy subjects and patients with clinically isolated syndromes, relapsing-remitting MS, primary or secondary progressive MS, or other neurological disorders. The pipeline, designed to optimize and compare the performance of distinct machine learning algorithms in the training cohort, generates predictive models not influenced by demographic features, such as age and gender, and displays high accuracy in the independent validation cohort. Proper application of machine learning to transcriptional profiles of circulating blood cells may allow identification of disease state and stage in MS.
format Online
Article
Text
id pubmed-7659538
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76595382020-11-16 Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning Acquaviva, Massimo Menon, Ramesh Di Dario, Marco Dalla Costa, Gloria Romeo, Marzia Sangalli, Francesca Colombo, Bruno Moiola, Lucia Martinelli, Vittorio Comi, Giancarlo Farina, Cinthia Cell Rep Med Article Peripheral blood mononuclear cells (PBMCs) bear specific dysregulations in genes and pathways at distinct stages of multiple sclerosis (MS) that may help with classifying MS and non-MS subjects, specifying the early stage of disease, or discriminating among MS courses. Here we describe an unbiased machine learning workflow to build MS stage-specific classifiers based on PBMC transcriptomics profiles from more than 300 individuals, including healthy subjects and patients with clinically isolated syndromes, relapsing-remitting MS, primary or secondary progressive MS, or other neurological disorders. The pipeline, designed to optimize and compare the performance of distinct machine learning algorithms in the training cohort, generates predictive models not influenced by demographic features, such as age and gender, and displays high accuracy in the independent validation cohort. Proper application of machine learning to transcriptional profiles of circulating blood cells may allow identification of disease state and stage in MS. Elsevier 2020-07-21 /pmc/articles/PMC7659538/ /pubmed/33205062 http://dx.doi.org/10.1016/j.xcrm.2020.100053 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Acquaviva, Massimo
Menon, Ramesh
Di Dario, Marco
Dalla Costa, Gloria
Romeo, Marzia
Sangalli, Francesca
Colombo, Bruno
Moiola, Lucia
Martinelli, Vittorio
Comi, Giancarlo
Farina, Cinthia
Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title_full Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title_fullStr Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title_full_unstemmed Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title_short Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
title_sort inferring multiple sclerosis stages from the blood transcriptome via machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659538/
https://www.ncbi.nlm.nih.gov/pubmed/33205062
http://dx.doi.org/10.1016/j.xcrm.2020.100053
work_keys_str_mv AT acquavivamassimo inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT menonramesh inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT didariomarco inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT dallacostagloria inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT romeomarzia inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT sangallifrancesca inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT colombobruno inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT moiolalucia inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT martinellivittorio inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT comigiancarlo inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning
AT farinacinthia inferringmultiplesclerosisstagesfromthebloodtranscriptomeviamachinelearning