Cargando…

Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk

There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies, Mark R., Martinec, Michael, Walls, Robert, Schwarz, Roman, Mirams, Gary R., Wang, Ken, Steiner, Guido, Surinach, Andy, Flores, Carlos, Lavé, Thierry, Singer, Thomas, Polonchuk, Liudmila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659582/
https://www.ncbi.nlm.nih.gov/pubmed/33205069
http://dx.doi.org/10.1016/j.xcrm.2020.100076
_version_ 1783608843645747200
author Davies, Mark R.
Martinec, Michael
Walls, Robert
Schwarz, Roman
Mirams, Gary R.
Wang, Ken
Steiner, Guido
Surinach, Andy
Flores, Carlos
Lavé, Thierry
Singer, Thomas
Polonchuk, Liudmila
author_facet Davies, Mark R.
Martinec, Michael
Walls, Robert
Schwarz, Roman
Mirams, Gary R.
Wang, Ken
Steiner, Guido
Surinach, Andy
Flores, Carlos
Lavé, Thierry
Singer, Thomas
Polonchuk, Liudmila
author_sort Davies, Mark R.
collection PubMed
description There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.
format Online
Article
Text
id pubmed-7659582
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76595822020-11-16 Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk Davies, Mark R. Martinec, Michael Walls, Robert Schwarz, Roman Mirams, Gary R. Wang, Ken Steiner, Guido Surinach, Andy Flores, Carlos Lavé, Thierry Singer, Thomas Polonchuk, Liudmila Cell Rep Med Article There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health. Elsevier 2020-08-25 /pmc/articles/PMC7659582/ /pubmed/33205069 http://dx.doi.org/10.1016/j.xcrm.2020.100076 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Davies, Mark R.
Martinec, Michael
Walls, Robert
Schwarz, Roman
Mirams, Gary R.
Wang, Ken
Steiner, Guido
Surinach, Andy
Flores, Carlos
Lavé, Thierry
Singer, Thomas
Polonchuk, Liudmila
Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title_full Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title_fullStr Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title_full_unstemmed Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title_short Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk
title_sort use of patient health records to quantify drug-related pro-arrhythmic risk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659582/
https://www.ncbi.nlm.nih.gov/pubmed/33205069
http://dx.doi.org/10.1016/j.xcrm.2020.100076
work_keys_str_mv AT daviesmarkr useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT martinecmichael useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT wallsrobert useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT schwarzroman useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT miramsgaryr useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT wangken useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT steinerguido useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT surinachandy useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT florescarlos useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT lavethierry useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT singerthomas useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk
AT polonchukliudmila useofpatienthealthrecordstoquantifydrugrelatedproarrhythmicrisk